UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the NOVEMBER 2004 question paper

0652 PHYSICAL SCIENCE

0652/06

Paper 6 (Alternative to Practical), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0652 (Physical Science) in the November 2004 examination.

	maximum	minimum mark required for grade:				
	mark available	A	С	E	F	
Component 6	60	41	30	21	16	

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

November 2004

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0652/06

PHYSICAL SCIENCE Paper 6 (Alternative to Practical)

	Page 1		Mark Scheme IGCSE – NOVEMBER 2004	Syllabus 0652	Paper 6	
1	(a)	no ch	nange in mass (OWTTE) (1)		<u> </u>	
		matte	er has neither been created nor destroyed (1)		[2]	
	(b)	a sol	id (suspension) produced <u>from a solution</u> OWTTE			
		OR				
		soluble substances (reacting) make an insoluble substance			[1]	
	(c)	1 wh	ite			
		2 wh	ite (turning darker/blue)			
		3 gre	en (turning brown)			
		(the o	changes of colour need not be mentioned)		[3]	
	(d)	1 bar	ium sulphate; accept BaSO₄			
		2 silv	ver chloride; accept NaC <i>l</i>			
		3 iror	n(II) hydroxide; accept Fe(OH) ₂			
		(reje	ct: iron hydroxide)			
		(the f	formulae must be correct to be credited)		[3]	
	(e)	gas e	escapes (from the flask) so decreasing the mass		[1]	
				Tota	al 10 marks	
2	(a)	(i)	3.0, 1.0, no tolerance		[2]	
		(ii)	21, 110 no tolerance		[2]	
	(b)	choic	ce of scale, both axes labelled with units (1)			
		all po	pints plotted correctly +/- 2 s, 0.05 mol/dm ³ (e.c.f.) (1)			
		smoo	oth curve (1)			
		(-1 m	nark if axes reversed)			
		(do n	ot penalise if scale begins at value greater than 0)		[3]	
	(c)	appro	oximately 32 s (from candidates' own graph +/- 2 s)		[1]	
	(d)	react	ion vessel and delivery tube (1)			
			ble method of measuring volume, e.g. graduated tube c ge (1)	over water, g	graduated [2]	
				Tot	al 10 marks	

	Page 2		Mark Scheme IGCSE – NOVEMBER 2004	Syllabus 0652	Paper 6
3	(a)	proje	ect a sharp image on the screen (OWTTE) (1)	.	
		mea	sure distance from lens to screen (1)		[2]
	(b)	20, 3	35, 65, 80 in correct positions (-1 for each error) no toler	ance	[2]
	(c)	smal	ller, inverted (1) same size, inverted (1) larger, inverted	(1)	[3]
	(d)	(i),(ii (iii)), both light rays and image correctly drawn (1)		
		(iv)	16 mm +/- 2 mm (e.c.f. on student's own diagram) (1)		[2]
	(e)	Expe	eriment 3		
		(acce	ept this answer even if (d) incorrectly drawn) (1)		[1]
				Tota	al 10 marks
4	(a)	cold	water 22° +/- 0.2°		
		Expe	eriment 1 final temperature 37.5 +/- 0.2°		
		Expe	eriment 2 final temperature 53.5 +/- 0.2°		[3]
	(b)	37.5	- 22 = 15.5° (e.c.f.)		
		70 - 3	53.5 = 16.5° (e.c.f.)		[2]
	(c)	4.2 x	x 100 x 15.5 = 6510 J (e.c.f.)		[1]
	(d)	4.2 x	x 100 x 16.5 = 6930 J (e.c.f.)		[1]
	(e)	the s	ame mass (volume) of water each time (1)		
		need	Is the same amount of heat exchanged (1)		
		(reje	ct: the hot water absorbs the heat from the cold water)		[2]
	(f)	preve	ent heat loss (using insulated containers)		
		take	into account heat gained by the containers		
		weig	h the water instead of measuring its volume		
		use a	a more accurate thermometer		
		repe	at and find the average result (any 1)		
		(reje	ct "Repeat the experiment")		[1]
				Tota	al 10 marks

IGCSE – NOVEMBER 2004 0652 5 (a) Experiment 1: no change; no; no (3) Experiment 5: powder turned red or brown OR red glow; yes; no. (3) (b) anhydrous copper sulphate (white) (1) turned blue (1) OR OR anhydrous copper sulphate (white) (1) turned blue (1) OR oR boiling point (1) is 100°C (1) OR freezing point (1) is 0°C (1) OR freezing point (1) is 0°C (1) Image: training with or (1) (c) named substance undergoes oxidation by combining with oxygen (1)	<u> </u> [6] [2]
Experiment 5: powder turned red or brown OR red glow; yes; no. (3) (b) anhydrous copper sulphate (white) (1) turned blue (1) OR anhydrous cobalt chloride (blue) (1) turns pink (1) OR boiling point (1) is 100°C (1) OR freezing point (1) is 0°C (1) (c) named substance undergoes oxidation by combining with oxygen (1)	
 OR red glow; yes; no. (3) (b) anhydrous copper sulphate (white) (1) turned blue (1) OR anhydrous cobalt chloride (blue) (1) turns pink (1) OR boiling point (1) is 100°C (1) OR freezing point (1) is 0°C (1) (c) named substance undergoes oxidation by combining with oxygen (1) 	
 red glow; yes; no. (3) (b) anhydrous copper sulphate (white) (1) turned blue (1) OR anhydrous cobalt chloride (blue) (1) turns pink (1) OR boiling point (1) is 100°C (1) OR freezing point (1) is 0°C (1) (c) named substance undergoes oxidation by combining with oxygen (1) 	
 (b) anhydrous copper sulphate (white) (1) turned blue (1) OR anhydrous cobalt chloride (blue) (1) turns pink (1) OR boiling point (1) is 100°C (1) OR freezing point (1) is 0°C (1) (c) named substance undergoes oxidation by combining with oxygen (1) 	
 OR anhydrous cobalt chloride (blue) (1) turns pink (1) OR boiling point (1) is 100°C (1) OR freezing point (1) is 0°C (1) (c) named substance undergoes oxidation by combining with oxygen (1) 	[2]
 anhydrous cobalt chloride (blue) (1) turns pink (1) OR boiling point (1) is 100°C (1) OR freezing point (1) is 0°C (1) (c) named substance undergoes oxidation by combining with oxygen (1) 	[2]
OR boiling point (1) is 100°C (1) OR freezing point (1) is 0°C (1) (c) named substance undergoes oxidation by combining with oxygen (1)	[2]
 boiling point (1) is 100°C (1) OR freezing point (1) is 0°C (1) (c) named substance undergoes oxidation by combining with oxygen (1) 	[2]
OR freezing point (1) is 0°C (1) (c) named substance undergoes oxidation by combining with oxygen (1)	[2]
freezing point (1) is 0°C (1)(c) named substance undergoes oxidation by combining with oxygen (1)	[2]
(c) named substance undergoes oxidation by combining with oxygen (1)	[2]
named substance undergoes reduction by losing oxygen (1)	
OR	
explanation based on changes of oxidation number	
OR	
mention of electron loss (e.g. by hydrogen atoms) and gain (e.g. by cop	oper ions)
explanations MUST refer to reactions from Fig. 5.2	
(accept explanations based on two different reactions)	[2]
Tot	tal 10 marks
6. (a) (i) (gravitational) potential (the word potential must be used) or kinet	tic
(ii) kinetic/motion	
(iii) electrical	[3]
(b) current = 2.2 A,	
voltage = 0.8 V, no tolerance	[2]
(c) $5 \times 10 \times 1 = 50 \text{ J}$ (accept answer with no unit)	[1]
(d) 2.2 x 0.8 x 10 = 17.6 J e.c.f. from (b) (accept answer with no unit)	[1]

Page	L	Mark Scheme		Paper
		IGCSE – NOVEMBER 2004	0652	6
(e)	energy lost as heat	t because of friction (1)		
	resistance of conne	ecting wire (1)		
	because the dynar	no is not efficient (1)		
	energy converted t	o sound or heat when the mass falls	(1)	
	(reject "heat lost fro	om the bulb") (any 2)		[2
(f)	change of mass, vo	oltage, current,		
	time of falling, brigl	nter bulb,		
	(reject "pulley move	es faster, greater energy exchange")	(any 1)	[1]
			Tota	al 10 marks