UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the NOVEMBER 2004 question paper

0652 PHYSICAL SCIENCE

0652/02
Paper 2 , maximum raw mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0652 (Physical Science) in the November 2004 examination.

	maximum	minimum mark required for grade:			
	mark available	A	C	E	F
Component 2	80	n / a	47	34	25

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.
Grade A^{*} does not exist at the level of an individual component.

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0652/02
 PHYSICAL SCIENCE
 Paper 2

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE - NOVEMBER 2004	0652	2

1 (a)(i) Moment $=5 \times 8$ [1]$=40 \mathrm{Ncm}$[2](-1 for incorrect/no unit)
(ii) 40 Ncm (ecf) [1]
(iii) 80 Ncm (ecf) [1]
(b)(i) Increases the moment [1]
(ii) Decreases the moment [1]
(c) (Electric) motor/ammeter etc. NOT generator/dynamo etc. [1]
Total [8]
2 (a) Brownian (motion) [1]
(b) molecules [1]
collide [1]
larger [1]molecules[1]
Total [5]
3 (a)(i) Convection[1]
(ii) Water expands on heating Becomes less dense Rises
ANY TWO[2]
(b)(i) Conduction [1]
(ii) Chemical [1]
Heat/Thermal Internal [1]
Exothermic (accept irreversible) [1]
(c) Insulating/lagging the tank - DO NOT accept vacuum or paint silver[1]
Total [8]
4 (a) Z [1]
because this contains P and Q from X and R from Y[1]
(b) R [1]
because this has travelled furthest with the (moving) solvent or [1] equivalent idea

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - NOVEMBER 2004	0652	2

5 (i)	Graphite	$\sqrt{ } 3$ (covalent) bonds for each atom \checkmark two dimensional structure \checkmark layers \checkmark strong bonds in layer and weak bonds between layers	ANY TWO	[2]
(ii)	Diamond	$\sqrt{ } 4$ (covalent) bonds for each atom \checkmark three dimensional structure \checkmark tetrahedral \checkmark all strong bonds	ANY TWO	[2]
	For both: NOT properties, NOT uses			Total [4]
6 (a)(i)	Loss of one (outer) electron			[1]
(ii)	Gain of one (outer) electron			[1]
(b)	Transfer of (one) electron from K to I			[1]
	To form ions that attract each other (K^{+}and I^{-})			[1]
	Can be answered mainly by diagram			Total [4]
7 (a)(i)	0.75 A			[1]
(ii)	Use of $\mathrm{R}=\mathrm{V} / \mathrm{I}$			[1]
	$R=6$			[1]
(iii)	3 (ohm) (ecf)			[1]
(b)	3.0 A			[1]
(c)	Fig 7.2 larger current through each bulb (necf)			[1]
				[1]

Total [8]

8 (a)(i) CH_{4}
(ii) $(12+4) 16$ (ignore any unit)
(b) $\left.\quad \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}\right)$
(error carried forward) all correct formulae

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - NOVEMBER 2004	0652	2

9 (a) Oxygen is removed [1]
from the copper oxide(or in terms of electron exchange)
(b) $\left.\begin{array}{ll}\sqrt{ } \text { high density } \\ \\ \checkmark \\ \\ \text { coloured compounds } \\ \\ & \sqrt{ } \text { can melting point } \\ \end{array}\right\} \quad$ ANY TWO
$\sqrt{ }$ coloured compounds
\checkmark high melting point
$\sqrt{ }$ can be used as a catalyst (element or in compound)
ANY TWO
10 (a) Filter (to remove excess magnesium)[1]leave filtrate to crystallise or equivalent[1]
(b) Use lighted splint NOT 'glowing' splint [1]
"pops" (necf) [1]
Total [4]
11 (a)(i) One ray correctly deflected towards the normal [1]
Second ray correct and consistent (not parallel to first not converging) [1]
(ii) Normal drawn and i correctly marked [1]
(iii) Refraction [1]
(b) Some explanation that the writing will be seen in a mirror [1]
Use of the term lateral inversion[1]
12 (a)(i) lodine [1]
(ii) Bromine is more reactive than iodine or equivalent [1]
(b) Bromine is less reactive than chlorine or equivalent [1]
13 Step 1 Filtration[1]
to remove mud etc. $+[1]$
Step 2 Chlorination (do not accept boiling) [1]
to kill bacteria etc. + [1]
(If in wrong order, mark as though in correct order but ignore the first mark scored)

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - NOVEMBER 2004	0652	2

14 (a)

Helans

sthens
(b) Alkenes have a double (carbon) bond
but alkanes have only single bonds (accept but alkanes do not),
(Must have the double statement for both marks)

15 (a)(i) Nuclides with same number of protons $\quad \begin{array}{lr}\text { [1] } \\ \text { but different number of neutrons } & \text { [1] }\end{array}$
(ii) Electron
very fast moving/emitted in radioactive decay + [1]
(b)(i) 38

52
38
(ii) Electron
(c) 39 [1]

0

