CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the November 2003 question papers

0652 PHYSICAL SCIENCE

0652/01
Paper 1 (Multiple Choice), maximum raw mark 40
0652/02 Paper 2 (Core), maximum raw mark 80
0652/03 Paper 3 (Extended), maximum raw mark 80
0652/06
Paper 6 (Alternative to Practical), maximum raw mark 60

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2003 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0652 (Physical Science) in the November 2003 examination.

	maximum	minimum mark required for grade:			
	mark available	A	C	E	F
Component 1	40	-	27	21	18
Component 2	60	-	32	22	17
Component 3	80	39	26	-	-
Component 5	30	-	-	-	-
Component 6	60	38	30	23	19

The threshold (minimum mark) for B is set halfway between those for Grades A and C.
The threshold (minimum mark) for D is set halfway between those for Grades C and E.
The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.
Grade A* does not exist at the level of an individual component.

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0652/01

PHYSICAL SCIENCE Multiple Choice

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE - NOVEMBER 2003	0652	1

Question Number	Key	Question Number	Key
1	C	21	D
2	A	22	A
3	B	23	C
4	D	24	C
5	A	25	D
6	A	26	D
7	C	27	A
8	D	28	B
9	B	29	A
10	B	30	C
		31	
11	D	32	A
12	C	33	B
13	A	34	B
14	D	35	D
15	B		
		36	C
16	D	37	B
17	C	38	A
18	A	39	A
19	A	40	C
20	B		

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0652/02
PHYSICAL SCIENCE Core

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE - NOVEMBER 2003	0652	2

1
(a) (i) Loss of one (outer) electron 1
(ii) Gain of one (outer) electron 1
(iii) Transfer of electron (from Na to Cl to form ions) $\mathbf{1}$ $\left[\begin{array}{l}\mathrm{Na}^{+} \\ \mathrm{Cl} l^{-}\end{array}\right]$ions attract $\quad 1$
(b) Diagram or text or both for ideas of: each atom provides one electron OR each atom needs one more electron

Therefore, shared pair of electrons
R : ultra violet
1

S: infra red
(b) Equal

1
[2]
(c) $\quad 1.35$ (micrometers) (accept 1.33 to 1.38)

Shake/mix with water
1

Filter 1
Dry residue (on filter paper) to obtain pepper 1
Leave filtrate/to crystallise/evaporate filtrate to dryness, to obtain salt

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - NOVEMBER 2003	0652	2

4
Proton mass 1

Neutron charge 0 (do NOT accept a dash [-])
Electron charge -1 (do NOT accept a dash [-])

5 (a) Use of speed = distance/time or $=200 / 25$

8
m/s
(b) $\quad \mathrm{R}$

1

Low centre of mass (equal to s) 1

Wide base 1

6 (a) High density
High melting point
Coloured compounds
Used as a catalyst
(b) Painting

Greasing
ANY TWO 1 + 1 (2)
Coating with plastic
Galvanising

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - NOVEMBER 2003	0652	2

7
(a) (i) (Nuclide with) the same Proton/Atomic Number 1
but different Nucleon/Mass number 1
(OR same number of protons 1
Different number of neutrons 1)
(ii) G-M tube, solid state detector 1
(iii) Alpha particles would be absorbed by the plastic bottle 2
(alphas short range/not penetrating enough 1)
(b) Clear attempt to halve once 1
Clear attempt to halve at least once more 1
60 (Bq) 1(Correct answer with no working $=\max 2$)
(c) Radiation from radioactive isotopes in the air/earth/building 2
(Vague statement, such as 'radiation from the surroundings' = max 1; do NOT accept 'radiation from the background')[3]
Total [10]
8 ...) are further apart 1 Therefore, fewer collisions with zinc (per second) 11 [2]
(b) 'Acid particles' (as above) move about faster 1
Therefore, collisions (with metal) are more frequent OR more 'vigorous' or equivalent 1[2]

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - NOVEMBER 2003	0652	2

9
(a) Only single bonds between carbon atoms
(b) (i) Water

Carbon dioxide
(ii) No carbon or soot produced

No nitrogen oxides produced
ANY TWO 1 + 1 (2)
No sulphur oxides produced
No carbon monoxide produced

10 (a) Differential expansion clear 1
Brass expands more than iron OR so brass on outside of curve orequivalent
(b) (i) Clear that strip is heated by current 1

So circuit breaks 1
Cools remaking the circuit 1
(ii) Any circuit requiring a flashing light, such as a car indicator

11 (a)
Metal densities HIGH - non-metals LOW 1

Metals are CONDUCTORS - non-metals INSULATORS
$\begin{array}{lll}\text { (b) } & \text { Order of reactivity - gold, iron, aluminium } & \mathbf{1} \\ \text { Further statement } & 1\end{array}$

Total [4]

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - NOVEMBER 2003	$\mathbf{0 6 5 2}$	2

12 (a) (i) Voltmeter connected in parallel with the wire 2 (If connected in parallel across the battery 1)
(ii) To vary the current through/pd across the wire 1
[3]
(b) Second wire has a smaller resistance (or vice versa)

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

INTERNATIONAL GCSE

MARK SCHEME
MAXIMUM MARK: 80
SYLLABUS/COMPONENT: 0652/03
PHYSICAL SCIENCE
Paper 3 (Extended)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE - NOVEMBER 2003	0652	3

Question1

(a) Nitric (condone HNO_{3}) 1
(b) $\mathrm{CuCO}_{3}+2 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right) 2+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

1 for formulae $\quad 1$ for balanced
(c) fizzing (gas bubbles or similar)
solid dissolves
solution turns green/blue
temperature increase ANY 2 2
(d) filter to remove excess solid - must come first 1
evaporate solution (slowly)
NOT heat over Bunsen - condone heat gently
(d) sodium carbonate is soluble in water
condone all sodium salts are soluble

Question 2

(a) (i) reference to dull or matt 1
reference to black or dark 1
does not reflect radiation or sentiments 1
(ii) water would move up tube
level in tube drops initially
water in flask expands
ANY 22
(b) (i) quantity of water too large
limited temperature rise and expansion
any sensible idea plus support
bore of tube too large
limited volume increase would not show up
heat needs to conduct through glass wall
glass insulator
(ii) smaller bulb - less liquid would show greater increase in
temp
thinner wall - easier for conduction to liquid
narrower tube - small volume expansion will show up more easily
liquid with greater expansivity - easier to see increase in length

ANY 2

Page 2	Mark Scheme	Syllabus	Paper

Question 3

(a) (i) diamond much harder than graphite 1

Any appropriate reference to layers in graphite 1
(ii) graphite better conductor than diamond 1
mobile (condone free) electrons (between layers) 1
(b) (i)

\cdot	x		x		\cdot
\cdot	\cdot	C	\cdot	O	\cdot
\cdot	\cdot	\cdot		\cdot	

1 for double bonds
1 for shells full
2
(ii) restricted supply of O_{2} or air 1
(iii) CO combines with haemoglobin 1

OR CO prevents O_{2} from entering red blood cells

Question 4

(a) (i) 8 2(2 scores 1)
(ii) (i) value/10 or $V=I R$
0.8 Asingle unit penalty to
be applied in (a)1
(iii) correct transformer equation 1
$\mathrm{Vs}=8$ or ecf from (a) (i) 1
12 V ecf from (a) (i) 1
(iv) use of 4 divisions 1
80 1
ms 1
(b) (i) diode/rectifier 1
(ii) half wave rectification shown (2 positive OR 1 negative 1 hump(s))

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - NOVEMBER 2003	0652	3

Question 5

(a) diffusion
(b) $\quad \mathrm{HCl}$ molecules heavier than NH_{3} molecules

OR reverse argument (condone particles)
HCl molecules slower or NH_{3} molecules faster2
(c) proton donated to NH_{3} molecule forming $\mathrm{NH}_{4}{ }^{+}$(OR ammonium) ion2
(d) Test: Dissolve $\mathrm{NaOH}(\mathrm{aq})$ and warm

Result: NH_{3} gas evolved (turns red litmus blue)
allow max 1 for litmus test only if no other test included

Question 6

(a) ratio $\sin i / \sin r$ or $v_{\text {substance }} / v_{\text {air or vac }} \quad 1$
i and r or $v_{\text {substance }}$ and $v_{\text {air or vac }}$ correctly defined 1
may score these marks if neutral comments in this part but correct in (b) (ii)
(b) (i) $60>40$ or sentiments 1 because light refracts towards the normal (as it enters the 1 water)
(ii) $n=\sin 60 / \sin 40 \quad 1$
0.867 and 0.643 seen 1
1.35 1

Question 7

(a) $\mathrm{Al}_{2} \mathrm{O}_{3} \quad 1$
(b) behaves as acid or base 1
reacts with acids and bases 1
(c) aeroplanes or cooking utensils 1
low density (light) low density (light) 1
corrosion resistant (not 'doesn't rust') high conductivity 1

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - NOVEMBER 2003	0652	3

(d) basic oxide
accept thallium is a metal (elements become more metallic 1 down group)
basic metal oxide scores 2

Question 8

(a) no current in coil 1
coil loses its magnetism 1
(b) conversion $\mathrm{g} \rightarrow \mathrm{kg}$ or $w=m g \quad 1$
$0.20 \quad 1$
200 scores 1
(c) steel high density or heavy or short distance fallen 1
unlikely that effect of air resistance significant 1
(d) appropriate equation(s) $\left(s=u t+1 / 2 g t^{2}\right.$ or $s=1 / 2 g t^{2}$ or $\quad 1$
$a=(v-u) / t)$
substitution(s) or idea that maximum speed = twice average $\quad \mathbf{1}$
10.4(2) 1
$\mathrm{m} / \mathrm{s}^{2}$ condone $\mathrm{N} / \mathrm{kg} 1$
$5.2 \mathrm{~m} / \mathrm{s}^{2}$ scores 3

Question 9

(a) temperature between $5^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ (condone warm)
glucose in solution 1
yeast (allow zymase or invertase) present
(b) (i) 180 seen

46 seen
(ii) 1 mol glucose $\longrightarrow 2 \mathrm{~mol} \mathrm{EtOH}$
or
180 g glucose $\longrightarrow 2 \mathrm{~mol} \mathrm{EtOH}$
18.4 g (ecf from (i))
-9.2 g scores 1
single unit penalty to be applied in (b)

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - NOVEMBER 2003	0652	3

(iii) 1 mol glucose $\longrightarrow 2 \mathrm{~mol} \mathrm{CO}_{2}$
or

$$
\longrightarrow 48 \mathrm{dm}^{3} \mathrm{CO}_{2}
$$

$36 \mathrm{~g} \longrightarrow 9.6 \mathrm{dm}^{3} \mathrm{CO}_{2}$ (ecf from (i)) 1 $4.8 \mathrm{dm}^{3}$ scores 1

Total 80

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0652/06
PHYSICAL SCIENCE
Paper 6 (Alternative to Practical)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE - NOVEMBER 2003	0652	6

1 (a) Completion of table:

volume of beaker/cm 3	time/s
100	6
500	28
1000	58

(1 mark each, no tolerance)
3
(b) relationship: greater the volume of the beaker, the longer the candle burns OWTTE (1)
explanation: (more) oxygen/air available (1)
(c) carbon dioxide
(d) test: use cobalt chloride paper OR anhydrous/ copper sulphate (1) result: (blue) cobalt chloride paper turns pink

OR (white) anhydrous copper sulphate turns blue (1)
(initial colour not necessary for the mark)
Reject: "find the boiling point of the liquid" (impractical)
(e) Candle wax is a hydrocarbon/contains carbon and hydrogen (1)

Carbon burns to form carbon dioxide
hydrogen burns to form water OWTTE (1)
(both necessary for the second mark)

Alternative mark scheme for (e):

Carbon from the candle forms CO_{2} (1)
Hydrogen from the candle forms water (1)
REJECT: water forms by condensation, CO_{2} forms by combustion (if the source of carbon and hydrogen not correctly given)

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - NOVEMBER 2003	0652	6

2 (a) Completion of table:

position of mass/cm	position of pivot/cm
4	38.5
8	39.4

(no tolerance)
2
(b) (i) $d_{1}=40-10=30 \mathrm{~cm}(1)$
$d_{2}=50-40=10 \mathrm{~cm}(1)$
(ii) mass $=30 \times 100 / 10=300$ (allow ecf from (b) (i)) (1)
unit given as g or grams (1)
2
(c) Average all 5 of the masses calculated
(d) Place 50 cm mark of rule on pivot (1)

Balance rule on pivot with 100 g mass on one side and rock on the other side (or show in diagram) (1)
Use Principle of Moments to calculate the mass of the rock OWTTE (1)

Alternative mark scheme for (d):

Replace the 100 g mass by the rock and move pivot until the rule balances (1)

Measure distances of rock $\left(\mathrm{d}_{1}\right)$ and 50 cm mark $\left(\mathrm{d}_{2}\right)$ from pivot (1)
Use the formula; mass $=\frac{d_{2} \times 300}{d_{1}}$
OR use the Principle of Moments to calculate the mass (1)
REJECT: use the formula given above to calculate mass
3

3 (a)
$25,3,44 \mathrm{~cm}^{3}$
(no tolerance)
3
(b) (i) copper or zinc, no reaction with water
(ii) iron (1)
iron rusts (and reacts with oxygen/air) (1)
2
(iii) magnesium OR calcium (1)

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - NOVEMBER 2003	0652	6

reacts with water (to give a gas) (1)
(In (ii) and (iii), if a second metal is given together with a correct one, ignore this as long as the explanation is correct)
(c) hydrogen
(b)
140.0 g
(no tolerance) (calculation need not be shown)1
(c) points plotted within $1^{\circ} \mathrm{C}$ and $1 \mathrm{~g}(2)(-1$ for each error)
smooth curve (not straight line) (1)
IGNORE any extrapolation through the origin
3
(d) $\quad 40 \mathrm{~g}$ of potassium nitrate in 100 g water at $60^{\circ} \mathrm{C}$

OR 7 g in 17.5 g water at $60^{\circ} \mathrm{C}$
OR 20 g in 50 g water at $60^{\circ} \mathrm{C}$ (etc)
1
(e) heat to (partly) evaporate (1)
allow solution to cool (and crystallise) (1)
Alternative answer: evaporate the solution (1) in a dish over a boiling water bath (1)
"Evaporate to dryness" gains 1 mark only
2

5 (a) test 1 copper (oxide) or a transition metal present (1)
test 3 not a carbonate or hydrogencarbonate (1)
test 4 chloride/halide ions (1)
test $5 \quad$ ammonia OR alkaline gas OR basic gas (1)
4

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - NOVEMBER 2003	0652	6

(b) (moist) red litmus (paper) (OR Universal Indicator) (1) turns blue (1) (or turns purple/blue)

OR gas forms white smoke with hydrogen chloride
2
(c) (i) light blue (1) blue precipitate (1)
(ii) deep (1) blue solution (1) (any 3 points)

3
(d) ammonium chloride (1)
copper oxide (1)
2

6 (a) (i) radio (wave)
(ii) sound (wave)

2
(b) The further away the source, the weaker is the sound OWTTE

1
(c) (i) 3.0 s
(no tolerance, must say 3.0)
(ii) $3.8+/-0.1 \mathrm{~s}$

2
(d) (i) $1000 / 3=333 \mathrm{~m} / \mathrm{s} \quad$ (ecf)
(ii) $1000 / 3.8=263 \mathrm{~m} / \mathrm{s}$ (ecf)

1
(e) The first (d)(i) (1) because the other one may be affected by the responses of the observer (1) OWTTE
(f) Repeat the experiment (and average the results)

Use a longer distance
Calibrate the c.r.o. screen to show 0.1 s (any one point)
1

