CAMBRIDGE

INTERNATIONAL EXAMINATIONS

JUNE 2003

INTERNATIONAL GCSE

MARKING SCHEME
MAXIMUM MARK: 40
SYLLABUS/COMPONENT: 0652/01
PHYSICAL SCIENCE
Paper 1 (Multiple Choice)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0652	1

Question Number	Key	Question Number	Key
1	C	21	A
2	B	22	C
3	B	23	D
4	C	24	C
5	C	25	D
6	A	26	B
7	D	27	A
8	B	28	A
9	B	29	D
10	C	30	D
11	D	31	B
12	A	32	A
13	D	34	A
14	D	35	B
15	B		D
		36	
16	D	37	A
17	B	38	B
18	B	39	A
19	C	40	D
20	A		

TOTAL 40

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

JUNE 2003

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0652/02

PHYSICAL SCIENCE
Paper 2 (Core)

1. 15

14
2, 8, 4 1
2. (a) (i) Any three of: circuit complete current in coil core magnetised armature attracted to the core $1+1+1$ (3 max $)$
(ii) soft iron loses its magnetism easily 1 EITHER steel retains its magnetism OR so that contacts re-open when S is opened
(b) EITHER use of $\mathrm{R}=\mathrm{V} / \mathrm{I}$ (in any form)

OR $R=12 / 4$ (in any form) 1
$R=3$
Ohm
(3)

Total 8
3. (a) (i)

(ii) covalent
(b) (i) $\mathrm{CH}_{3} \mathrm{OH}$ 2
$\left(\mathrm{CH}_{4} \mathrm{O}\right.$ or similar $=1$ compensation $)$
(ii) $12+4+16=32$ (ignore units)

1

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0652	2

4. (a) (i) Evidence of both outer rays converging after leaving lens and central ray straight1
all three rays pass through a single point on central ray $\quad+1$
(ii) focal length correctly marked +1
(b) (i) i correctly marked 1
(ii) ray reflected so that $i=r$
$\begin{array}{lll}\text { 5. (a) } & \text { Bromine atom takes electron from iodide ion } & 1 \\ & \text { EITHER to become bromide ion } & \\ & \text { OR and replaces iodide/forms potassium bromide } & 1\end{array}$
(b)

Ethane

1
No change in colour 1

Ethene

1
goes colourless 1 (or correct formula)
6. (a) (i) mercury or alcohol
(ii) $35 \pm 1 \quad 1$
(iii) Make Hg move further/increase sensitivity

1
(b) (i) cools

1
liquid contracts 1
(ii) correct position at 0 1

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0652	2

7. (a) Increase the potential energy of the molecules OR do work in separating the molecules1
against intermolecular forces/bonds 1
(b) Molecules are moving around randomly 1
spread in all directions(2)
Total 4
8. (a) (i) refraction 1
(ii) arrow drawn at right angles to the refracted waves 1
(b) (i) less 1
(ii) the same 1
(iii) less 1
(2)
(3)
9. (a) Hydrochloric 1
(b) (i) Carbon dioxide 1
(ii) Bubble through limewater +1
goes cloudy/milky +1
(c) Filter 1
Evaporate (to dryness) +1
(1)

Total 6
10. (a) Example 2 because force moves
(max 1 if box/boy moves) 1
whereas in 1 the force is stationary 1
(Note: there is no credit for correct answer without some form of explanation)
(b) 18
1
N
1

(2)
(2)11. (a) hydrogen loses electron1
in the formation of $\mathrm{H}_{2} \mathrm{O}$ molecule 1
(b) Energy given out on combustion 1
(c) On combustion the only product is water 2 (OR no products of combustion/pollutants 1 except water 1)(2)
(1)

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

JUNE 2003

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0652/03

PHYSICAL SCIENCE

Paper 3 (Extended)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0652	3

1

2
(a)
a) equation
correct substitution [1]
$36.7 \mathrm{~m} / \mathrm{s}^{2}$ [1]
(b) k.e. equation [1]
working
4.5(4) J

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0652	3

$\begin{array}{ll}\text { (ii) } & \text { not efficient }\end{array}$ [1]
Question Total [13]

3 (a) Light can cause Ag^{+}ions $\rightarrow \mathrm{Ag}$ atoms; bottle keeps out light rays
(b) $\quad \mathrm{Na}$ reacts violently with air and water; paraffin is inert and covers surface
(c) Easily picks up water vapour \rightarrow blue hydrate; desiccator keeps air dry
(d) Volatile so kept cold; poisonous vapour so in fume cupboard
(c) magnifying glass/lens to correct long sight etc.

Page 3 Mark Scheme	Syllabus	Paper	
	IGCSE EXAMINATIONS - JUNE 2003	0652	3

5 (a) Mobile electrons (sea of electrons) NOT free electrons
(b) Unequal sizes of ions in alloy; give uneven (lumpy) layers; which cannot slide past each other easily; hence alloy is less malleable
(c) (i) $\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba} \underline{\mathrm{OR} \mathrm{Ra}}$
(ii) Fizzing

Gradually dissolve
Allow: Alkaline solution

6 (a) $\quad \max$ voltage $=0.4 \mathrm{~V}$
\min voltage $=0.5 \mathrm{~V}$
(b) mention of electromagnetic induction
idea of flux cutting or similar
(c) positive and negative peak
flux cuts coil in opposite directions

Any two pairs of answers, i.e. statement and consistent explanation
$1^{\text {st }}$ peak wider
magnet moving slower - time longer
flat middle section
zero rate of flux cutting
$1^{\text {st }}$ peak lower
rate of flux cutting less
\qquad
ex
-

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0652	3

7
(a) (i) Charge on ion is +2 (oxidation number +2)

Allow: - Valency is 2
(ii) Calcium has only one possible oxidation number (valency)
(b) (i) $1000 \mathrm{~cm}^{3}$ contains 1 mole
$\therefore 50 \mathrm{~cm}^{3}$ contains 0.050 moles
(ii) 1 mole $\mathrm{CuCO}_{3} \rightarrow 2$ moles acid
$\therefore 0.025$ moles $\mathrm{CuCO}_{3} \rightarrow 0.050$ moles acid
(iii) $64+12+3 \times(16)[1]=124$ [1]
(iv) Mass = Moles $\times \mathrm{M}_{\mathrm{r}} \underline{\text { OR }}$ Mass $=0.025 \times 124[1]=3.1 \mathrm{~g}[1]$
(a) idea of voltage
max terminal p.d./open circuit p.d. or other definition
max terminal p.d./open circuit p.d. or other definition
(b) idea of high resistance implies low current
idea that voltmeter must drop vast majority of voltage
(c) (i) equation
102Ω used
$1.47 \times 10^{-2} \mathrm{~A}$
(ii) use of current in (i) and 100Ω [1]
1.47 V (e.c.f.)
(iii) larger resistance voltmeter
smaller current
less voltage dropped across internal resistance
first incorrect or missing unit only incurs penalty of -1

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0652	3

9 (a)

([1] for $\mathrm{C}=\mathrm{C},[1]$ for filled shells)
(b) Alkenes have $\mathrm{C}=\mathrm{C}$ bond; needs at least 2 carbon atoms
(c) (i) $\mathrm{C}_{4} \mathrm{H}_{10} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$
([1] for formulae, [1] for balance)
(ii) High temp; high Pressure OR catalyst

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

JUNE 2003

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 30

SYLLABUS/COMPONENT: 0652/05 PHYSICAL SCIENCE Practical

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0652	5

1 (a) (iii) a reading for h 5 readings taken (-1 if not in g) force calculated correctly extension calculated (deduct 1 if not in mm)
(b) axes labelled correctly sensible scale plotting correctly
best line drawn goes through or would go through origin
(c) extension read correctly or calculated
(d) proportional (2) allow one if says extension increases by fixed amount for fixed force
(e) line correctly drawn and labelled
(f) read extension
use graph
calculate in g or kg using correct number,
i.e. $/ 10$ to kg or x 100 to g
2 (a) each metal correct as -ve 1
three values of p.d. to be within 0.2 V of SV 3
(c) magnesium with a suitable explanation 2
(d) correct order $\mathrm{Mg}, \mathrm{Zn}, \mathrm{Cu}$ 1
(e) bubbling, colour fades, black/brown deposit, magnesium disappears or other suitable observation
magnesium is displacing copper ion (some reference to electron movement or ion changes is essential to score both marks)2
(f) test with each metal note polarity compare this polarity with the other three3

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

JUNE 2003

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0652/06

PHYSICAL SCIENCE
Alternative to Practical

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0652	0

1 (a) Masses:

(b) Volumes:

$$
\left.\begin{array}{l}
\text { object } A-27 \mathrm{~cm}^{3} \\
\text { object } B-12 \mathrm{~cm}^{3} \\
\text { object } C-56 \mathrm{~cm}^{3}
\end{array}\right\} \text { No tolerance }
$$

3
(c) Density of object $\mathrm{C}=28 / 56=0.5$ (allow 1 mark for correct substitution but incorrect answer) (allow ecf from (a) and (b)) unit $\mathrm{g} / \mathrm{cm}^{3}$ (mark is independent of answer to calculation)
(d) object C would float [1]
because it is less dense than water (OWTTE) [1] (explanation must relate to relative densities of object C and water)
do NOT allow independent answers, i.e. correct explanation MUST be given to score first mark.
(allow converse answer if candidate's value for part (c) is >1)
(e) some water would be left in the beaker when transferring to the measuring cylinder
do NOT allow 'the experiment/results is/are not accurate'

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0652	6

2 (a) | Magnesium | copper [1] | $\mathrm{pd}=2.0[1]$ (do NOT allow 2) | 2 |
| :--- | :--- | :--- | :--- |
| Zinc | copper [1] | $\mathrm{pd}=1.1[1]$ | 2 |

(b) most negative $=$ magnesium 1
most positive $=$ copper 1
(c) magnesium, zinc, copper 1
(d) find the p.d. with each of the other metals [1]
note which metal is positive/negative [1]
metal X is positive with a more reactive metal and vice versa [1]

3

Answers must relate to the experiment used in the question.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0652	6

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0652	6

4 (a) (i) Blue/Dark green (must be COLOUR i.e. NOT pH number) 1 (do NOT allow 'purple')
Ammonia/gas is alkali(ne) (allow 'basic/base') 1
(a) (ii) Red 1
(b) (Light) Green 1
Gases neutralise each other (NOT one gas is acidic and the 1 other is alkaline)
(c) (i) Ammonia moves faster 1
(c) (ii) Because it has smaller particles (allow converse) 1
(d) Spreading out of particles (OWTTE) 1

Page 5 Mark Scheme	Syllabus	Paper	
	IGCSE EXAMINATIONS - JUNE 2003	0652	6

(a) (ii) Any TWO from:
Stir [1]
Heat/warm [1]
Shake [1] 2
(b) Alkali(ne)/has pH greater than 7 1
(c) (i) Mixed with water/water has been added 1
(c) (ii) Alkali and acid have reacted [1] so the solution is neutral/pH 7 2 [1]
(c) (iii) Alkali is in excess (OWTTE) (do NOT allow 'the acid has not 1 reached the alkali')
(c) (iv) Calcium Hydroxide + Ethanoic Acid Calcium 1
Ethanoate + Water

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0652	6

6 (a) Mass of beaker $=43.4 \mathrm{~g}$Mass of beaker + water $=93.6 \mathrm{~g}$Mass of beaker + sodium chloride solution $=108.6 \mathrm{~g}$(b) (i) Mass of sodium chloride solution $=108.6-43.4=65.2 \mathrm{~g}$1(allow ecf from (a))
(ii) Mass of sodium chloride crystals $=108.6-93.6=15.0 \mathrm{~g}$1(allow ecf from (a)) (do NOT allow 15g)
(c) \quad Volume $=55 \mathrm{~cm}^{3}$ 1(d) (b) (i) and (c) (both required for mark)(accept values quoted (allow ecf)) (allow calculated value ofdensity e.g. $65.2 / 55$ or $1.19 \mathrm{~g} / \mathrm{cm}^{3}$ (allow ecf from candidate'svalues))
(e) Place hexane in measuring cylinder to a known volume [1] [1]
Add 15 g of sodium chloride to the hexane [1]
Note new volume in measuring cylinder and subtract original volume of hexane [1]

Grade thresholds taken for Syllabus 0652 (Physical Science) in the June 2003 examination.

	maximum mark available	minimum mark required for grade:			
		C	E	F	
Component 1		-	27	21	17
Component 2		-	32	21	18
Component 3	80	47	29	-	-
Component 5	30	21	17	13	11
Component 6	60	54	43	27	24

The threshold (minimum mark) for B is set halfway between those for Grades A and C.
The threshold (minimum mark) for D is set halfway between those for Grades C and E .
The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.
Grade A* does not exist at the level of an individual component.

