

Mark Scheme (Results)

January 2019

Pearson Edexcel International GCSE Mathematics B (4MB0) Paper 02R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019 Publications Code 4MB0_02R_1901_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- cao correct answer only
- o ft follow through
- isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated always check the working in the body of the script and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there are multiple attempts shown, then all attempts should be marked and the highest score on a single attempt should be awarded.

• Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially shows that the candidate did not understand the demand of the question.

• Linear equations

Full marks can be gained if the solution alone is given, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Question	Working	Mark	Notes
1 (a)	$\begin{pmatrix} -4 & -2 \\ 14 & 18 \end{pmatrix}$	2	B2 (-1eeoo)
(b)	$\begin{pmatrix} 5 & 3 & 2 \\ 11 & 11 & 0 \\ 17 & 19 & -2 \end{pmatrix}$	2	B2(-1eeoo)
2	$14.0 \times 10^{147} + 55.0 \times 10^{149} \text{ (removing denominators)}$ OR $\frac{140.0 \times 10^{-76} + 550.0 \times 10^{-74}}{10.0 \times 10^{-223}} \text{ (combining fractions)}$ $0.014 \times 10^{150} + 5.5 \times 10^{150} \text{ (oe, equal indices) OR} \frac{5.514 \times 10^{-73}}{1.0 \times 10^{-223}}$ 5.514×10^{150} NB: No working seen scores no marks.	3	M1 M1 (DEP) A1

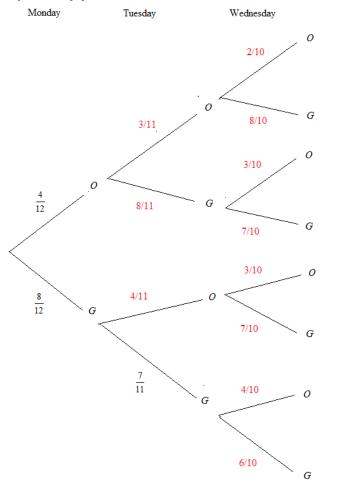
Question	Working	Mark	Notes
3 (a)	$y = \frac{k}{x^2}$ (oe)	1	B1
(b)	$\frac{dy}{dx} = -\frac{2k}{x^3}$ NB: ft on differentiation of " x^{-m} " in their (a)		B1 (ft)
	$-\frac{5}{32} = "-\frac{2k}{4^3}"$ NB: DEP on using cand's identified "derivative" of their (a) $k = 5, \frac{5 \times 4^3}{32 \times 2}$ (oe) NB: DEP on above M1 and B1		M1 M1 (DEP) (Really A1)
	$\frac{45}{4} = \frac{"5"}{x^2}$ NB: DEP on subst their "k" into their "(a)" $x = \pm \frac{2}{3}, \pm 0.67 \text{ or better}$	5	M1 (DEP) A1

Question	Working	Mark	Notes
4 (a)	$5(3)^{3} + 2(3)^{2} + k(3) + 36 = 0$ (oe, eg		M1
	135 + 18 + 3k + 36 = 0		
	$k = -63 \tag{cso}$	2	A1
	(OR: Long Division: 36 + 3(51 + k) = 0 (oe) (M1)) (OR: $5(3)^3 + 2(3)^2 + (-63)(3) + 36 = 0$ and correctly evaluated so that $0 = 0$) (M1) (A1))		
(b)	$(ax^{3} + (b - 3a)x^{2} + (c - 3b)x - 3c = 5x^{3} + 2x^{2} - 63x + 36$ (expanding))		
	a = 5 -3c = 36 c = -12 $b - 3 \times "a" = 2 OR "c" - 3b = "-63"$ (equating correct coefs and Subst) b = 17	5	B1 M1 A1 M1 (DEP) A1
	(OR : Long Division: $5x^2 + 17x$ $5x^2 + 17x - 12$ (Complete and correct method) a = 5 b = 17 c = -12		M1 (M1(DEP)) (B1) (A1) (A1)

Question	Working	Mark	Notes
5 (a)	$20000 \times (\$0.80 - \$0.65)$ (oe)		M1
	\$3000	2	A1
(b)	CP: $$0.65 \times 0.8$ (oe) (= \$0.52)		M1
	SP: $$0.80 \times 0.875$ (oe) (= \$0.70)		M1
	$\therefore n \times (\$"0.70" - \$"0.52") = 4500$ (oe)		M1 (DEP)
	· <i>n</i> – <u>4500</u>		M1
	$\therefore n = \frac{4500}{("\$0.80 \times 0.875" - "\$0.65 \times 0.8")}$		(DEP)
	NB: Dependent on correct methods for both CP and SP.		
	$n = 25\ 000$ (cao)	5	A1

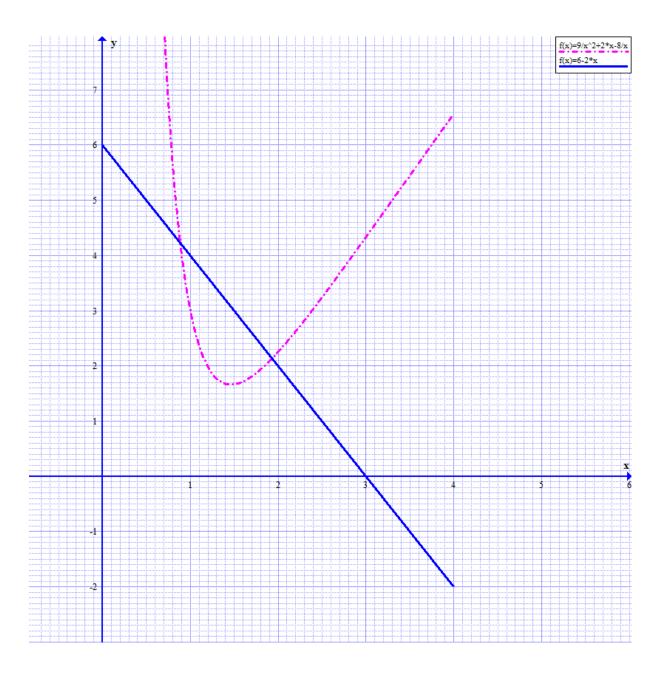
Question	Working	Mark	Notes			
Penalise labelling ONCE only.						
6 (a	Triangle A drawn and labelled.	1	B1			
(t	Triangle $B \left(= \begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 & 2 \end{pmatrix} \right)$	2	B2 (-1eeoo)			
((Lines measuring the perpendicular distances from $x + y = 5$ (drawn or indicated) of the respective vertices of triangles <i>A</i> and <i>B</i> .		M1			
	Triangle $C = \begin{pmatrix} 2 & 5 & 3 \\ 4 & 4 & 5 \end{pmatrix}$ drawn and labelled.	3	A2 (-1eeoo)			
	NB: If no measuring lines but triangle <i>B</i> is correct M1 A2 If no measuring lines but two vertices of triangle are correct M1 A1 A0					
(0	$ \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix} " \begin{pmatrix} 2 & 5 & 3 \\ 4 & 4 & 5 \end{pmatrix} " $		M1			
	Triangle $D = \begin{pmatrix} 8 & 8 & 10 \\ -4 & -10 & -6 \end{pmatrix}$ drawn and labelled	3	A2 ft-(-1eeoo)			
(6	NB: ft on their triangle C (n =) 4	1	B1			

Question	Working	Mark	Notes
7 (a)	$\overrightarrow{AB} = 8\mathbf{b} - 12\mathbf{a}$	1	B1
(b)	$\overrightarrow{AP} = -\frac{1}{m} \times 12\mathbf{a}$	1	B1
(c)	$\overrightarrow{AQ} = \frac{1}{n} \times "(8\mathbf{b} - 12\mathbf{a})"$	1	B1 ft
(d)	In $\triangle APQ\left(\overrightarrow{PA} = \frac{12}{m}\mathbf{a}\right)$		
	$\overrightarrow{PQ} = -\overrightarrow{AP} + \overrightarrow{AQ} = -\overrightarrow{AP} + \overrightarrow{AP} + \overrightarrow{AQ} = -\overrightarrow{AP} + \overrightarrow{AP} + \overrightarrow{AQ} = -\overrightarrow{AP} + \overrightarrow{AP} + AP$		M1
	$\overrightarrow{PQ} = 12\left(\frac{1}{m} - \frac{1}{n}\right)\mathbf{a} + \frac{8}{n}\mathbf{b}$ (oe but cao)	2	A1 Separate out a and b components
(e)	Both $\begin{cases} \text{Components of } \mathbf{a} \implies 3=12\left(\frac{1}{m}-\frac{1}{n}\right) \\ \text{Components of } \mathbf{b} \implies 2=\frac{8}{n} \end{cases}$		M1 Using \overrightarrow{PQ} their
	$n = 4$ $\frac{12}{m} - \frac{12}{"4"} = 3$ (Subst their <i>n</i>)		A1 cao M1 (DEP)
	m = 2	4	A1 cao
(f)	Area of $OPQB = 20 - \frac{1}{"2"} \times \frac{1}{"4"} \times 20$		M1
	$= 17.5 (cm^2)$ (cao)	2	A1


Que	estion	Working	Mark	Notes
	Penalis	se nc ONCE only		
8	(a)	$\triangle OAB$ is an isosceles triangles so <i>OM</i> is perpendicular to <i>AB</i> . OR If a radius of a circle is at right angles to a chord, then it bisects the chord (oe).	1	B1
	(b)	$\cos 20 = \frac{5}{OA} \text{(oe)}$ OR		M1 Correct equation involving <i>OA</i>
		$\left(\tan 20 = \frac{OM}{5} (OM = 1.820)\right)$		
		$OA = \sqrt{5^2 + "1.820"^2}$ $OA = 5.3209 \rightarrow 5.32$	2	A1
	(c)	$\angle OAD = 90^{\circ}$		B1 Can be implied
		$\tan 40 = \frac{"OA"}{AD} \qquad (oe)$		M1
		$\frac{AD}{\sin 50} = \frac{"5.32"}{\sin 40}$		
		(B1) (implied) (M1) $AD = 6.3412 \rightarrow 6.34$	3	A1
	(d)	$BD^{2} = "AD"^{2} + 10^{2} - 2 \times "AD" \times 10 \times \cos("90" + 20)$		M1
		$BD^2 = 140.21 + 43.374$		M1 (DEP)
		$BD = 13.5494 \rightarrow 13.5$	3	A1

Question	Working	Mark	Notes
(e)	<u>"AD"</u> "BD"		M1
	$\sin \angle ABD = \sin("90"+20)$		
	$\angle ABD = \sin^{-1} \left(\frac{"AD" \times \sin("90" + 20)}{"BD"} \right)$		M1 (DEP)
	OR $10^2 = "13.5^2" + "6.34^2" - 2 \times "13.5" \times "6.34" \times \cos \angle ADB$		
	$10 = 13.5 + 0.34 - 2 \times 13.5 \times 0.34 \times \cos 2 \text{ ADB} $ (M1)		
	$\angle ADB = \cos^{-1} \left(\frac{"13.5^2" + "6.34^2" - 10^2}{2 \times "13.5" \times "6.34"} \right) (= 44.33^{\circ})$		
	(M1(DEP))		
	$\angle ABD = 25.7, 25.8, 25.9, 26.0, 26.1, 26.2, 26.3$	3	A1

Question	Working	Mark	Notes
9 (a)	Tuesday: $\left(\frac{3}{11}, \frac{8}{11}\right)$	4	B1
	$\frac{4}{11}$		B1
	Wednesday: $\left(\frac{2}{10}, \frac{8}{10}\right)$ and $\left(\frac{3}{10}, \frac{7}{10}\right)$		B1
	$ \left(\frac{3}{10}, \frac{7}{10}\right) \text{ and } \left(\frac{4}{10}, \frac{6}{10}\right) $ $ \frac{4}{12} \times \left(\frac{3}{11}\right) \times \left(\frac{2}{10}\right) $		B1
(b)(i)	$\frac{4}{12} \times "\frac{3}{11}" \times "\frac{2}{10}"$		M1
	$\frac{24}{1320}$, $\frac{1}{55}$, awrt 0.018, 1.8%	2	A1
(ii)	$1 - P(GGG) = 1 - \frac{8}{12} \times \frac{7}{11} \times \frac{6}{10}$		M1
	(OR		7 terms having 2 (8 x 7 x $4/(12x11x10)$
	P(OGG) + P(GOG) + P(GGO) + P(OOG) + P(OGO) + P(OOO) + P(OOO)		3 (8 x 7 x 4/(12x11x10) + 3(8 x 4 x 3/(12x11x10)
	$\frac{4}{12} \times \frac{8}{11} \times \frac{7}{10} + \frac{8}{12} \times \frac{4}{11} \times \frac{7}{10} + \frac{8}{12} \times \frac{7}{11} \times \frac{4}{10} + \frac{4}{12} \times \frac{3}{11} \times \frac{8}{10}$		$+ 4 \times 3 \times 2/(12 \times 11 \times 10)$
	$= \frac{12}{4} \frac{11}{8} \frac{10}{3} \frac{12}{8} \frac{11}{4} \frac{10}{3} \frac{12}{4} \frac{11}{3} \frac{10}{4} \frac{12}{3} \frac{11}{2} \frac{10}{2} (M1) $		
	$= \frac{\frac{4}{12} \times \frac{8}{11} \times \frac{7}{10} + \frac{8}{12} \times \frac{4}{11} \times \frac{7}{10} + \frac{8}{12} \times \frac{7}{11} \times \frac{4}{10} + \frac{4}{12} \times \frac{3}{11} \times \frac{8}{10}}{+ \frac{4}{12} \times \frac{8}{11} \times \frac{3}{10} + \frac{8}{12} \times \frac{4}{11} \times \frac{3}{10} + \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10}} $ (M1))		
	$\frac{984}{1320}$, $\frac{41}{55}$, awrt 0.745, 74.5%	2	A1


GGG or OGG or GOG or GGO (ie one suitable permutation)	2	B1
All four: GGG and OGG, GOG, GGO		B1
$\frac{8}{12} \times \frac{7}{11} \times \frac{6}{10} + (\text{at least one "correct" triplet of probabilities})$		M1
$\frac{8}{12} \times \frac{7}{11} \times \frac{6}{10} + \left(\frac{4}{12} \times \frac{8}{11} \times \frac{7}{10} + \frac{8}{12} \times \frac{4}{11} \times \frac{7}{10} + \frac{8}{12} \times \frac{7}{10} \times \frac{7}{11} \times \frac{4}{10} \right)$		M1 (DEP)
$\frac{1008}{1320}$, $\frac{42}{55}$, awrt 0.764, 76.4%	3	A1
	All four: GGG and OGG, GOG, GGO $\frac{8}{12} \times \frac{7}{11} \times "\frac{6}{10}" + (\text{at least one "correct" triplet of probabilities})$ $\frac{8}{12} \times \frac{7}{11} \times "\frac{6}{10}" + \left(\frac{4}{12} \times "\frac{8}{11}" \times "\frac{7}{10}" + \frac{8}{12} \times "\frac{4}{11}" \times "\frac{7}{10}" + \frac{8}{12} \times \frac{7}{11} \times "\frac{4}{10}"\right)$ 1008 42	All four: GGG and OGG, GOG, GGO $\frac{8}{12} \times \frac{7}{11} \times "\frac{6}{10}" + (\text{at least one "correct" triplet of probabilities})$ $\frac{8}{12} \times \frac{7}{11} \times "\frac{6}{10}" + \left(\frac{4}{12} \times "\frac{8}{11}" \times "\frac{7}{10}" + \frac{8}{12} \times "\frac{4}{11}" \times "\frac{7}{10}" + \frac{8}{12} \times \frac{7}{11} \times "\frac{4}{10}"\right)$ 1008 42

Question	Working	Mark	Notes
10 (a)	1.86 1.87	3	B1 B1
	3.24		B1
	NB: Penalise nc ONCE only		
(b)	-1 mark for	3	B3 ft
	• straight line segments		
	• each point missed		
	• each missed segment		
	• each point not plotted		
	• each point incorrectly plotted		
	• tramlines		
	• very poor curve		
	NB: (1) Accuracy for both plotting and drawing is $\pm \frac{1}{2}ss$		
	(2) ft on their "1.86", "1.87" and 3.24"		
(c)	$x = 1.46 \ (\pm \frac{1}{2} ss = \pm 0.05)$	1	B1 ft
	NB: Accept 1.5 if min pt occurs exactly at "x=1.5" on their graph		

Question	Working		Mark	Notes
(d)	<u>Method 1:</u> Starting with $\frac{9}{x^2} + 2x - \frac{8}{x} = ax + b$:			
	$\lambda \lambda \lambda$			M1
	Multiply by x^2 : $9 + 2x^3 - 8x = ax^3 + bx^2$			1411
	$\left(\therefore \left(2-a\right) x^3 - bx^2 - 8x + 9 = 0 \right)$			
	Comparing coefs (ie one of x^3 or x^2)			M1 (DEP)
	a = -2			A1 (DEP on 1^{st} M)
			4	
	b = 6		4	A1
	(OR <u>Method 2</u> : Starting with $4x^3 - 6x^2 - 8x + 9 = 0$:			
	Divide by x ² : $4x - 6 - \frac{8}{x} + \frac{9}{x^2} = 0$	(M1)		
	$\left(\therefore \frac{9}{x^2} - \frac{8}{x} = 6 - 4x \right)$			
	Add +2x to both sides: $\frac{9}{x^2} - \frac{8}{x} + 2x = 6 - 2x$	(M1 (DEP))		
	a = -2	(A1)		
	b = 6	(A1) 4)		
(e)	Their " $y = 6 - 2x$ " going through one "correct" point			M1
	y = 6 - 2x drawn and passing through 2 correct points	(cao)		A1
	0.88 (±0.05)			A1ft DEP on M1
	1.93 (±0.05)		4	A1ft DEP on M1
	NB: Penalise answer not to 2dp ONCE only			

Question	Working	Mark	Notes
	Penalise incorrect form in (c) and/or (f) ONCE only		
11 (a)	19 = 8a + b	2	B1
	57 = 27a + b		B1
(b)	Correct attempt to solve simul. equations $eg 38 = 19a$		M1
	a = 2		A1
	<i>b</i> = 3	3	A1
(c)	$y = "2"x^3 + "3"$ OR $x = "2"y^3 + "3"$		M1
	$y = "2" x^{3} + "3"$ OR $x = "2" y^{3} + "3"$ $f^{-1} : x \mapsto \sqrt[3]{\frac{x-3}{2}}$ (cao)	2	A1
(d)	$g(2p) = \frac{2p^2}{2p - p}$ $= 2p$		M1
	=2p	2	A1

Question	Working	Mark	Notes
(e)	$gg(x) = \frac{\left(\frac{p^2 x}{x-p}\right)}{\frac{px}{x-p} - p}$		M1
	$\left(=\frac{\frac{p^2 x}{x-p}}{\frac{p x-p(x-p)}{x-p}}=\frac{p^2 x}{x-p}\times\frac{x-p}{p x-p(x-p)}\right)$		
	= x (cso)	2	A1
(f)	$g^{-1}(x) = \frac{px}{x-p}$ (oe) (eg accept $y = \frac{px}{x-p}$ if (c)'s answer has been penalised.)	1	B1