

Mark Scheme (Results)

January 2018

Pearson Edexcel International GCSE Mathematics A (4MB0)
Paper 01R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code 4MB0_01R_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

M marks: method marks A marks: accuracy marks

o B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Question	Scheme	Mark	Notes
1	$2x(x^2-3z)+z(x^2-3z)$ OR $x^2(2x+z)-3z(2x+z)$	2	M1
			A1
	$(2x+z)(x^2-3z)$		
2	$126 = 2 \times 3^2 \times 7$	2	M1
	$ \begin{array}{c} 126 = 2 \times 3^2 \times 7 \\ 612 = 2^2 \times 3^2 \times 17 \end{array} $ (prime factors of 126 or 612)		A1
	OR Factor tree		
	2 <u>126 612</u>		
	3 63 306		
	$ \begin{array}{c cccc} 3 \overline{\smash)21} & 102 \\ 7 & 34 \end{array} $		
	, 34		
	HCF = 18		
3	$\frac{960 \text{ km}}{21 \text{ kg}} \times 4.55 \text{ litres}$ (oe)	2	M1
	91 litres (66)		A1
	48 (km per gallon)		
4 (a)	0	1	B1
(b)	2	1	B1
5	$\frac{8}{8} \times 748$ (oe)	2	M1
	$\frac{8}{2+7+8} \times 748 \qquad \text{(oe)}$		A1
	252 ()		
	352 (m)		
	M1 for either of the other two lengths of the triangle		
	1	2	N/1
6	Shaded area = $4^2 - \frac{1}{4}\pi(4^2)$ (oe, can be implied)	2	M1 A1
	4 ` ′		***
	awrt 3.43 (cm ²)		
7	$\frac{360}{24}$ OR $180 - \frac{(2 \times 24 - 4) \times 90}{24}$	2	M1
	$\frac{1}{24}$ OR 180- $\frac{1}{24}$		A1
	15		
8		2	M1
	$\left[\left(100 - \frac{8^2}{2} \right) - \left(100 - \frac{12^2}{2} \right) \right]$ OR		A1
	$\left(100 - \frac{12^2}{2}\right) - \left(100 - \frac{8^2}{2}\right) \qquad \text{(oe)}$		
	40 (Accept –40)		
	10 (11000pt 10)		

$(BC+10)\times 10 = (12+8)\times 8 \text{(oe)}$ $BC = 6 \text{ (cm)}$ $10 (1,5), (5,1), (2,4), (4,2), (3,3)$ $OR \text{ a 6 x 6 table with 5 possible dou identified}$ $OR \text{ at least 3 correct probability products ad}$ $All 5 \text{ correct probability products ad}$	ducts added	M1 A1 M1 M1 A1	(DEP)
10 (1,5), (5,1), (2, 4), (4,2), (3, 3) OR a 6 x 6 table with 5 possible dou identified OR at least 3 correct probability pro-	ble rolls ducts added	M1 M1	(DEP)
10 (1,5), (5,1), (2, 4), (4,2), (3, 3) OR a 6 x 6 table with 5 possible dou identified OR at least 3 correct probability pro-	ble rolls ducts added	M1	(DEP)
OR a 6 x 6 table with 5 possible dou identified OR at least 3 correct probability produced in the second se	ble rolls ducts added	M1	(DEP)
identified OR at least 3 correct probability pro-	ducts added		(DEP)
OR at least 3 correct probability pro-	2	A1	
	2		
All 5 correct probability products ad	$\frac{1}{2}$		
	$\frac{1}{6}$		
$\frac{5}{36}$, awrt 0.139, 13.9%			
$\overrightarrow{OY} = \left(\begin{array}{c} -4 \\ 2 \end{array} \right) - \begin{pmatrix} -7 \\ 6 \end{array} \right) = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$	3	M1 M1 A1	
$\left \overrightarrow{OY} \right = \sqrt{"3"^2 + "-4"^2}$			
Second M mark for the modulus of t	heir \overrightarrow{OY} but not		
for \overrightarrow{OX} or \overrightarrow{YX}			
NB: Accept working for \overrightarrow{YO}			
5 (obtained from correct	et working)		
M1M1A0 max if $\overrightarrow{OY} == \begin{pmatrix} -3\\4 \end{pmatrix}$ used			
12 $\angle BCD = 45 \text{ or } \angle DBC = 45 \text{ and } \angle$	ACE=60 3	B1	
OR Join AB		B1	
$\therefore \angle ABC = 60 \text{ (Alt. Seg Thm)} \therefore \angle R$	RBA=75	B1	
∠ACB = 75°			
∠s on straight line and Tangents to	a circle have the same lengt	h.	
OR ∠s on straight line and Isosceles	$\Delta_{\rm S}$		
OR (From 1 st B1: Alternate Segmen			
NB: Accept angles on diagram			

Question	Scheme	Mark		Notes
13	$4x^2 + 45 = 9x^2$	3	M1	(DED)
	Condone lack of brackets for M1 only $45 = 5x^2$ (oe)		M1 A1	(DEP)
	x = 3			
	Accept $x = \pm 3$			
14	$\sqrt{\left(\sqrt{8}\right)^2 + 1^2}$ or 3 (Pythagoras)	3	M1 M1 A1	(DEP)
	$\sqrt{\left(\sqrt{8}\right)^2 + 1^2} \text{ or } 3 \qquad \text{(Pythagoras)}$ $\therefore (3) \left(\frac{\sqrt{8}}{\sqrt{\left(\sqrt{8}\right)^2 + 1^2}} + \frac{1}{\sqrt{\left(\sqrt{8}\right)^2 + 1^2}} \right)$			
	$1+\sqrt{8}$			
	NB: No working shown scores M0 M0 A0 even if correct answer given.			
15 (a)	3, 6, 9, 12, 15 only	1	B1	
(b)	$C = \{6, 12, 18,, 48\}$	3	B1 B1	
	First B mark in (b) can be implied by		B1	
	$(A \cap B) \cap C' = \{3, 9, 15\}$ (so $C' = \{3, 9,, 45\}$)			
	(so $C' = \{3, 9,, 45\}$)			
	$\therefore (A \cap B) \cap C' = \{3, 9, 15\}$			
	NB: ft on "(a)"			
	$n([A \cap B] \cap C') = 3 \text{ (cao)}$			
16 (a)	$\begin{pmatrix} -9 & -25 \\ -4 & 26 \end{pmatrix}$	2	B2	(-1eeoo)
(b)	$\begin{pmatrix} -5 & 1 & 12 \\ 0 & -14 & -28 \end{pmatrix}$	2	B2	(-1eeoo)

Question	Scheme	Mark	Notes
17	New $R = \frac{x \times 1.05}{y \times 0.75}$ or $\frac{1.05}{0.75}$ (oe)	4	M1 A1 M1 (DEP)
	$= \frac{7}{5}R \text{ or } 1.4 \text{ or } 140$ (oe)		A1
	$\therefore \text{ increase} = \frac{\left(\frac{7}{5} - 1\right)R}{R} \times 100 \qquad \text{(oe)}$		
	3 rd M mark for correct method to convert to required %		
	e.g. $140-100$, $(1.4-1.0)\times100$, etc. 40%		
18	w(5y-2x) = 2(x+3y)+2(5y-2x)	4	M1
	(removing denominators correctly)		M1 (M1)
	5yw - 2xw = 2x + 6y + 10y - 4x (expanding)		(M1)
	$(\mathbf{OR} \ w(5y-2x) = 2(8y-x)$		M1 A1
	(removing denominators) $5yw-2xw=16y-2x$ (expanding)		
)		
	5yw - 16y = -2x + 2xw (collecting terms in y)		
	$y = \frac{2x(w-1)}{(5w-16)}, \frac{2xw-2x}{5w-16}$ (oe)		
19 (a)	$\frac{5 \times 7 \times 9 + 2 \times 6 \times 9 - 4 \times 6 \times 7}{6 \times 7 \times 9}$ (oe, no errors)	2	M1 A1
	$\frac{255}{378}$, $\frac{85}{126}$		
	NB: No working seen scores M0 A0		
(b)	0.6746→0.675 NB: ft on 4 figure accuracy of their (a) giving their "3 sf answer"	1	B1 ft
(c)	6.75×10^{-1} (or better)	1	B1 ft

Que	estion	Scheme	Mark	Notes
20	(a)	$1 - \frac{4}{t^2}$ (one term correct)	3	M1 M1 (DEP) A1
		$"1 - \frac{4}{t^2}" = 0$ (equating their		
		f(t) to 0) t = +2 (cao) $\left("2" + \frac{4}{"2"}\right) - \left(8 + \frac{4}{8}\right)$ (oe)	2	M1 A1
21	(a)	4.5 (metres) $x + y = 550$	1	B1
	(b)	$22x + 12(y-50) + (12-5) \times 50 = 8600 \text{ (oe)}$	1	B1
	(c)	" $22x+12$ " $(550-x-50)$ " + $(12-5)\times50=8600$ " (oe but complete method to solve SEs for x and y with no errors) NB: c's SEs in (a) and (b) must be linear SEs in x	3	M1 A1 A1
		and y with (a) having unit coefs. x = 225 y = 325		
22	(a)	$-12 < 4x$ OR $3x \le 6$ (oe) -3 < x $x \le 2$	3	M1 A1 A1
		NB: $-3 < x \le 2$ scores A2		
	(b)	-5 -4 -3 -2 -1 0 1 2 3 4 5 x	2	B1 ft B1 ft
		Open circle at " $x=-3$ " and closed circle at " $x=2$ "		
		One single line joining the two circles		

Que	stion	Scheme	Mark	Notes
23	(a)	One term correct	2	M1
				A1
	(1.)	$9x^2 - 30x$	4	3.41
	(b)	$"9x^2 - 30x" = -25$	4	M1 A1
		0 2 20 + 25(0)		M1
		$9x^2 - 30x + 25(=0)$		A1
		$(3x-5)^2$ (Attempt to factorise c's		
		quadratic)		
		$x = \frac{5}{10}$ OR $1 = \frac{2}{10}$ OR 1.67		
24	()	$x = \frac{5}{3}$ OR $1\frac{2}{3}$ OR 1.67 $\frac{6}{100000000000000000000000000000000000$	2	N / 1
24	(a)	$\frac{6}{100} = \frac{10}{100}$ oe	3	M1 M1 (DEP)
		$\frac{1}{\sin \angle ABC} = \frac{1}{\sin 50}$ oe		A1
		. (6×sin 50)		
		$\angle ABC = \sin^{-1}\left(\frac{6 \times \sin 50}{10}\right)$		
		(10)		
		∠ABC =27.363 →27.4 awrt		
	(b)	AB _ 10	3	M1
		$\frac{AB}{\sin\left(180 - \left(50 + "\angle ABC"\right)\right)} = \frac{10}{\sin 50}$		M1 (DEP)
		, , , , , , , , , , , , , , , , , , , ,		(M1) (M1 (DEP))
		$10 \times \sin(180 - (50 + " \angle ABC)")$		(MII (DEF))
		$AB = \frac{10 \times \sin\left(180 - \left(50 + \text{"} \angle ABC\right)\text{"}\right)}{\sin 50}$		
		SM2 0		
		(OR		
		$AB^2 = 6^2 + 10^2 - 2 \times 6 \times 10 \times \cos(180 - (50 + "\angle ABC"))$		
		- ','		
		$AB = \sqrt{((6^2 + 10^2) - (2 \times 6 \times 10 \times \cos(180 - (50 + "\angle ABC))))}$	[[]]	
)		
		/		
		$AB = 12.74 \rightarrow 12.7 \text{ (cm)}$ awrt		

Question	Scheme	Mark	Notes
25 (a)	$\frac{1}{24} + \frac{1}{48} + \frac{1}{24x}$ of the tank filled in 1 hour, so $\frac{1}{24} + \frac{1}{48} + \frac{1}{24x}$ (oe) seen	2	M1 A1
	$\frac{3x+2}{48x}$ or $\frac{1}{16} + \frac{1}{24x}$ (isw after correct answer seen)		
(b)) : The 3 taps fill " $\frac{3x+2}{48x}$ "×15 OR $\left(\frac{1}{16} + \frac{1}{24x}\right) \times 15$	4	M1 (DEP) M1 (DEP) A1
	tanks of water in 15 hours		
	So to fill in tank we must have		
	" $\frac{3x+2}{2x} \times \frac{15}{24}$ " = 1 (tank)		
	45x + 30 = 48x (removing denominators)		
	$ \left(\text{OR } \frac{1}{16} + \frac{1}{24x} = \frac{1}{15} \right) \\ \left(\text{M1(DEP)} \right) \\ 24x = 240 $		
	(M1(DEP)) $x = 10$		

Question	Scheme	Mark	Notes
26 (a)	0.7 Bus 0.6 Not early Not early Probability pairs (0.3, 0.7), (0.9, 0.1), (0.4, 0.6)	2	B2 (-1 each incorrect pair)
(b)	"0.3×0.1" 0.03, 3%	2	M1 A1
(c)	" 0.3×0.9 " OR " 0.7×0.4 " " $0.3 \times 0.9 + 0.7 \times 0.4$ " $\frac{11}{20}$, 0.55, 55%	3	M1 M1 (DEP) A1

N A A A A A A A A A A A A A	Question	Notes
(b) Point X is st BX is perpendicular to CX (see diagram) $\angle BCX = 20^{\circ}$ $\tan \angle BCA = \frac{15}{30} (\angle BCA = 26.565^{\circ})$ Bearing of A from $C = 270 + ("\angle BCA" + 20)$		M1 M1 (DEP) A1
$\tan \angle BCA = \frac{15}{30} (\angle BCA = 26.565^{\circ})$ Bearing of A from $C = 270 + ("\angle BCA" + 20)$ (OR)	(b)	M1
		M1 M1 (DEP) (M1) (M1) (DEP) (M1) (DEP)
tan $\angle BAC = \frac{30}{15}$ ($\angle BAC = 63.435^{\circ}$) \therefore bearing of C from A is $200 - "63.435" $		