INTERNATIONAL

IGCSE

London Examinations IGCSE
Mathematics (4400)
First examination May 2004

July 2003, Issue 1

Specimen Papers and Mark Schemes

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel International centres receive the support they need to help them deliver their education and training programmes to learners.
For further information please call our International Customer Relations Unit
Tel $\quad+44$ (0) 1908847750
international@edexcel.org.uk
www.edexcel-international.org

Authorised by Elizabeth Blount
Publications Code: UG013054
All the material in this publication is copyright © Edexcel Limited 2004

Contents

Specimen Papers
Specimen Paper 1F (Foundation Tier) 1
Specimen Paper 2F (Foundation Tier) 19
Specimen Paper 3H (Higher Tier) 37
Specimen Paper 4H (Higher Tier) 53
Mark Schemes and Specification Grids
Mark Scheme and Specification Grid Paper 1F (Foundation Tier) 71
Mark Scheme and Specification Grid Paper 2F (Foundation Tier) 79
Mark Scheme and Specification Grid Paper 3H (Higher Tier) 85
Mark Scheme and Specification Grid Paper 4H (Higher Tier) 91

Important Note

Please note that the boxes which appear after each question and sub question refer to the grade at which that question is set, and the specific area in the Specification which that question tests.

This information is given to be of use to teachers and it will NOT appear on the examination paper when this Specification is first assessed in April/May 2004.

Centre No.					
Candidate No.					

Surname
Initial(s)

Paper Reference(s)
4400/1F

London Examinations IGCSE

Mathematics

Paper 1F

Foundation Tier
Specimen Paper
Time: 2 hours

Materials required for examination Nil

Items included with question papers Nil

Instructions to Candidates

In the boxes above, write your centre number and candidate number, your surname, initial(s) and signature.
The paper reference is shown at the top of this page. Check that you have the correct question paper and write the paper reference for which you have been entered.
Answer ALL the questions in the spaces provided in this question paper.

Information for Candidates

There are 18 pages in this question paper. All blank pages are indicated.
The total mark for this paper is 100 . The marks for the various parts of questions are shown in round brackets, e.g. (2).
You may use a calculator.
A formula sheet is printed on the inside cover of this question paper.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers.
Work steadily through the paper.
Do not spend too long on one question.
Show all stages in any calculations.
If you cannot answer a question, leave it and attempt the next one. Return at the end to those you have left out.

IGCSE MATHEMATICS 4400

FORMULA SHEET - FOUNDATION TIER

Pythagoras' Theorem $a^{2}+b^{2}=c^{2}$

Area of a trapezium $=\frac{1}{2}(a+b) h$

adj $=$ hyp $\times \cos \theta$
opp $=$ hyp $\times \sin \theta$
opp $=\operatorname{adj} \times \tan \theta$
Volume of prism $=$ area of cross section \times length or $\sin \theta=\frac{\text { opp }}{\text { hyp }}$ $\cos \theta=\frac{\text { adj }}{\text { hyp }}$ $\tan \theta=\frac{\text { opp }}{\text { adj }}$

Circumference of circle $=2 \pi r$

$$
\text { Area of circle }=\pi r^{2}
$$

Volume of cylinder $=\pi r^{2} h$
Curved surface area
of cylinder $=2 \pi r h$

Answer ALL TWENTY FOUR questions.
 Write your answers in the spaces provided.
 You must write down all stages in your working.

Leave
blank

1. Here is a list of numbers.

$$
\begin{array}{lllllllll}
8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16
\end{array}
$$

From the list, write down
(a) the two numbers that are multiples of 5,
(b) the two numbers that are factors of 24,
(c) a square number,
\qquad
(d) a prime number.
(1)
2. Here are the first five terms of a number sequence.

$$
\begin{array}{lllll}
6 & 10 & 14 & 18 & 22
\end{array}
$$

(a) Write down the next two terms in the sequence.
\qquad ,
(b) Explain how you found your answer.
\qquad
(c) Explain why 675 is not a term of this number sequence.
\qquad
\qquad
3. The table shows the temperature in six cities on one day.

City	Nicosia	Paris	London	Moscow	Nairobi	Berlin
Temperature ${ }^{\circ} \mathrm{C}$	13	-6	0	-21	23	-7

(a) Which city has the lowest temperature?
(b) List the temperatures in order of size.

Start with the lowest temperature.
\qquad
(c) Work out the difference in temperature between Nairobi and Paris.

In the next four hours, the temperature in Berlin increased by $8{ }^{\circ} \mathrm{C}$.
(d) Work out the new temperature in Berlin.
4. The points A, B and C lie on the circumference of a circle, centre O.

Write down the special name for
(i) the line $O A$,
\qquad
(ii) the line $B C$.
5. The bar chart shows the average number of hours of sunshine each day in London and in Cyprus each month from April to September.

Average number of hours of sunshine each day

(a) Write down the average number of hours of sunshine each day in London in August.
\qquad
(b) Write down the average number of hours of sunshine each day in Cyprus in September.
(c) Write down the name of the month in which the average number of hours of sunshine each day in London was 7.

In October, the average number of hours of sunshine each day in London is 3 hours. In Cyprus, it is 9 hours.
(d) Draw two bars to show this information on the bar chart.

There are 30 days in September.
(e) Work out the total number of hours of sunshine in Cyprus in September.
6. Here is a triangle \mathbf{T}.

Here are nine more triangles.

(a) Write down the letters of the three triangles that are congruent to the triangle \mathbf{T}.
\qquad
(b) (i) Write down the letter of the triangle that is an enlargement of triangle \mathbf{T}.
(ii) Find the scale factor of the enlargement.
\qquad
\qquad
(Total 4 marks)
7. This word formula can be used to work out the perimeter of a rectangle.

$$
\text { Perimeter }=2 \times \text { length }+2 \times \text { width }
$$

(a) Work out the perimeter of a rectangle with a length of 12 cm and a width of 7 cm .
\qquad
(b) Work out the width of a rectangle with a perimeter of 50 cm and a length of 16 cm .
\qquad
8. (a) (i) Find the value of 6.7^{2}
(ii) Write your answer to part (i) correct to 1 significant figure.
\qquad
(b) Find the value of $\sqrt{75.69}$
\qquad
(c) Find the cube of 12
\qquad
(d) Find the value of $58+(7.6+2.4)^{3}$
9. Here is a 5-sided spinner.

Its sides are labelled 1, 2, 3, 4 and 5.
Alan spins the spinner and throws a coin.
One possible outcome is (3, Heads).
(a) List all the possible outcomes.

The spinner is biased.
The probability that the spinner will land on each of the numbers 1 to 4 is given in the table.

Number	1	2	3	4	5
Probability	0.36	0.1	0.25	0.15	

Alan spins the spinner once.
(b) Work out the probability that the spinner will land on 5 .

Bhavana spins the spinner 50 times.
(c) Work out an estimate for the number of times the spinner will land on 1.
\qquad
10.

Leave

The scale diagram shows a man and a dinosaur called a velociraptor. The man is of average height.
(a) Write down an estimate for the height of the man.

Give your answer in metres.
(b) Estimate the height of the velociraptor.

Give your answer in metres.
\qquad
11. (a) Simplify $4 b+2 c+3 b-6 c$
(b) Factorise $x^{2}+8 x$
\qquad
12. (a) Work out $\frac{4}{5}$ of 85
(b) Work out $\frac{8}{9}-\frac{2}{3}$
(c) Work out $\frac{8}{9} \div \frac{2}{3}$

Give your answer as a mixed number.
13. A cuboid has
a volume of $56 \mathrm{~cm}^{3}$,
a length of 4 cm ,
a width of 2 cm .
Work out the height of the cuboid.
14. Here is a sketch of a triangle.
$P R=6.4 \mathrm{~cm}$
$Q R=7.7 \mathrm{~cm}$
Angle $R=35^{\circ}$

Diagram NOT accurately drawn
(a) In the space below, make an accurate drawing of the triangle.
(b) Use a ruler and compasses to construct, on your drawing, the bisector of angle Q. Show all your construction lines.
15.

This rule is used to find how far apart to plant two bushes.

Add the heights of the bushes.
Divide your answer by three.

Aroshe is going to plant two bushes.
The heights of the bushes are 46 cm and 20 cm .
(a) Use the rule to work out how far apart Aroshe should plant the bushes.
cm

Ben is going to plant two different bushes.
He should plant them 50 cm apart.
The height of one of the bushes is 90 cm .
(b) Work out the height of the other bush.

The heights of two different bushes are $a \mathrm{~cm}$ and $b \mathrm{~cm}$.
The two bushes should be planted $d \mathrm{~cm}$ apart.
(c) Write down a formula for d in terms of a and b.
16. Asif has a box of 18 pens.

9 of the pens are blue.
5 of the pens are black.
The rest of the pens are red.
Asif is going to choose one pen at random from the box.
(a) Find the probability that Asif will choose
(i) a blue pen,
(ii) a red pen.
\qquad
(b) Find the probability that Asif will choose a blue pen or a red pen.
\qquad

Asif removes one blue pen, one black pen and one red pen from the box.
He does not replace them.
He then says, "If I choose a pen now, the probability that I will choose a blue pen is the same as it was before I removed the pens."
(c) Is Asif right?

Show working to justify your answer.
17. The population of a village was 1750 .

The population fell by 12%.
Work out the new population.
18. The grid represents part of a map.

The point C is on a bearing of 137° from the point marked A and on a bearing of 213° from the point marked B.

On the grid, mark, with a cross (\times), the position of the point C and label it with the letter C.
19.

The diagram shows a paved surface.
All the corners are right angles.
Work out the area of the paved surface.
State the units of your answer.
20. Kate drove 132 miles in 2 hours 24 minutes.

Work out her average speed in miles per hour.
miles per hour
21.

$A B C$ is a right-angled triangle.
$A B=4 \mathrm{~cm}, B C=6 \mathrm{~cm}$.
Calculate the length of $A C$.
Give your answer correct to 3 significant figures.
Diagram NOT accurately drawn
22. Mortar is made from cement, lime and sand.

The ratio of their weights is $2: 1: 9$
Work out the weight of cement and the weight of sand in 60 kg of mortar.

23. The length of a rod is 98 cm correct to the nearest centimetre.
(a) Write down the minimum length the rod could be.
(b) Write down the maximum length the rod could be.
24. $\mathscr{E}=\{$ Integers $\}$
$A=\{1,2,3,6\}$
$B=\{4,5\}$
$C=\{x: 6 \leq 3 x<18\}$
(a) List the elements of the set
(i) $A \cup B$,
(ii) C .
(b) Find $A \cap B$.

BLANK PAGE

Centre No.					
Candidate No.					

Paper Reference						
$\boldsymbol{4}$	$\boldsymbol{4}$	$\boldsymbol{0}$	$\boldsymbol{0}$		2	$\mathbf{1}$

Surname	Initial(s)
Signature	

Signature

Paper Reference(s)

4400/2F

London Examinations IGCSE

Mathematics

Paper 2F
Foundation Tier
Specimen Paper
Time: 2 hours

Materials required for examination $\overline{\mathrm{Nil}}$

Items included with question papers Nil

Instructions to Candidates

In the boxes above, write your centre number and candidate number, your surname, initial(s) and signature.
The paper reference is shown at the top of this page. Check that you have the correct question paper and write the paper reference for which you have been entered.
Answer ALL the questions in the spaces provided in this question paper.

Information for Candidates

There are 18 pages in this question paper. All blank pages are indicated.
The total mark for this paper is 100 . The marks for the various parts of questions are shown in round brackets, e.g. (2).
You may use a calculator.
A formula sheet is printed on the inside cover of this question paper.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers.
Work steadily through the paper.
Do not spend too long on one question.
Show all stages in any calculations.
If you cannot answer a question, leave it and attempt the next one. Return at the end to those you have left out.

IGCSE MATHEMATICS 4400

FORMULA SHEET - FOUNDATION TIER

Pythagoras' Theorem $a^{2}+b^{2}=c^{2}$

Area of a trapezium $=\frac{1}{2}(a+b) h$

adj $=$ hyp $\times \cos \theta$
opp $=$ hyp $\times \sin \theta$
opp $=\operatorname{adj} \times \tan \theta$
or $\sin \theta=\frac{\text { opp }}{\text { hyp }}$
$\cos \theta=\frac{\text { adj }}{\text { hyp }}$
$\tan \theta=\frac{\text { opp }}{\text { adj }}$

Circumference of circle $=2 \pi r$

Area of circle $=\pi r^{2}$

Volume of cylinder $=\pi r^{2} h$
Curved surface area of cylinder $=2 \pi r h$

Answer ALL TWENTY FOUR questions.
 Leave
 blank

Write your answers in the spaces provided.
You must write down all stages in your working.
1.

(a) Write down the fraction of this shape which is shaded.
\qquad
(b) Write down the percentage of this shape which is shaded.
\qquad
(c) Which of these fractions are not equivalent to $\frac{2}{3}$?
$\frac{3}{4} \quad \frac{4}{6}$
$\frac{7}{8}$
$\frac{6}{9}$
$\frac{8}{12}$
\qquad
2.
5.08
7.8
5.3
7.35
7.21
(a) List these numbers in order of size.

Start with the smallest number.
\qquad
(b) Write 0.35 as a fraction.

Give your answer in its simplest form.
.
3. The diagram shows a triangle $A B C$ on a centimetre grid.

(a) Write down the co-ordinates of the point
(i) A, \qquad
(ii) B.
(.
(b) Write down the special name for triangle $A B C$.
\qquad
(c) Measure the length of the line $A B$.

Give your answer in millimetres.
\qquad mm
(d) (i) Measure the size of angle x.
(ii) Write down the special name that is given to this type of angle.
(2)
(e) Draw one line of symmetry on the triangle.
4. Here are some patterns made with crosses.

\times		\times		\times	\times		\times	\times	
\times		\times							
\times		\times							
Patter	mber 1	Pattern Number 2			Pattern Number 3				

(a) Draw Pattern Number 5.
(b) Complete the table for Pattern Number 5 and Pattern Number 6.

Pattern Number	1	2	3	4	5	6
Number of crosses	5	8	11	14		

(c) Work out the Pattern Number that has 26 crosses.

Pattern Number.
(d) Work out the number of crosses in Pattern Number 10.
5. Here are Jason's maths homework marks for his last 10 homeworks.

$$
\begin{array}{llllllllll}
8 & 6 & 4 & 8 & 1 & 10 & 8 & 4 & 9 & 5
\end{array}
$$

(a) Write down the modal mark.
\qquad
(b) Work out the median mark.
\qquad
(c) Work out the range of the marks.
\qquad
(d) Work out the mean mark.
\qquad
6.

(a) Write down the special name of this quadrilateral.
(b) Write down the number of lines of symmetry this quadrilateral has.
\qquad
(c) Write down the order of rotational symmetry of this quadrilateral.
\qquad
7.

(a) What is the reading on Scale A?
amps
Leave

(b) What is the reading on Scale B?
8. Jo did a maths test.

There was a total of 40 marks for the test.
Jo got 65% of the marks.
(a) Work out 65% of 40 .

Jo got 36 out of 80 in an English test.
(b) Work out 36 out of 80 as a percentage.
9. Conversion graph for litres and gallons.

Litres

Use the conversion graph to convert
(i) 4 gallons to litres,
\qquad
(ii) 1.9 gallons to litres,
\qquad
(iii) 26 litres to gallons.
\qquad
10.

For this solid, write down
(i) the number of faces,
\qquad
Leave blank
(ii) the number of edges.
11. Elena goes on holiday to New York.

The exchange rate is $£ 1=1.545$ dollars.
She changes $£ 800$ into dollars.
(a) How many dollars should she get?

After her holiday, Elena changes 120 dollars back into pounds.
The exchange rate is the same.
(b) How much money should she get?

Give your answer to the nearest penny.
£ \qquad
12. (a) Complete this table of values for $y=3 x-1$.

x	-2	-1	0	1	2	3
y			-1			8

(2)
(b) On the grid, draw the graph of $y=3 x-1$.

(c) Use your graph to find the value of x when $y=3.5$
\qquad
(1)
(Total 5 marks)
13. 40 passengers at Dubai Airport were asked which country they were flying to. Here is a frequency table which shows that information.

Country	Number of passengers	
USA	14	
France	9	
Spain	12	
Greece	5	

Draw an accurate pie chart to show this information.
Use the circle below.

(Total 4 marks)
Page Total
14.

Diagram NOT accurately drawn
(a) (i) Work out the size of the angle marked x°.
(ii) Give reasons for your answer.
\qquad
\qquad ...
\qquad
(b) (i) Work out the size of the angle marked y°.
(ii) Give a reason for your answer.
\qquad
\qquad
15.
30%
$\begin{array}{ll}\frac{1}{4} & 0.37\end{array}$
$\frac{1}{3} \quad \frac{2}{5}$
0.299

List these numbers in order of size.
Start with the smallest number.
\qquad
16. This is a recipe for making a Tuna Bake for 4 people.

```
Tuna Bake
Ingredients for 4 people.
400 g of tuna
400 g of mushroom soup
100 g of grated cheddar cheese
4 spring onions
250 g of breadcrumbs
```

Work out the amounts needed to make a Tuna Bake for $\mathbf{1 0}$ people.
\qquad g of tuna
\qquad g of mushroom soup
\qquad g of grated cheddar cheese
spring onions
\qquad g of breadcrumbs
17. (a) Solve $5 x-7=2 x+11$
$x=$
(b) Solve $\frac{16-y}{3}=3$

$$
y=
$$

18.

(a) Describe fully the single transformation which takes shape \mathbf{A} onto shape \mathbf{B}.
\qquad
(b) Describe fully the single transformation which takes shape \mathbf{A} onto shape \mathbf{C}.
\qquad
19. Work out the value of $\sqrt{\frac{83.5 \times 978}{1025+222}}$

Give your answer correct to 3 significant figures.
20. (a) Expand
(i) $3(2 c+5)$
(ii) $y(y-5)$
\qquad
\qquad
(b) Factorise $15 m+10$
(c) Expand and simplify $(x+5)(x-3)$
\qquad
21. Express 72 as the product of powers of its prime factors.
22. The table gives information about the weights, in kilograms, of 100 donkeys.

Weight of donkeys $(w \mathrm{~kg})$	Frequency
$65<w \leq 70$	4
$70<w \leq 75$	10
$75<w \leq 80$	34
$80<w \leq 85$	32
$85<w \leq 90$	16
$90<w \leq 95$	4

(a) Write down the modal class interval.
(b) Work out the class interval which contains the median.
(c) Work out an estimate for the mean weight of the donkeys.
23.

Diagram NOT accurately drawn

Leave
blank
(b) Work out the volume of the cylinder.

Give your answer correct to 3 significant figures.
24.

Diagram NOT accurately drawn

Angle $Q=90^{\circ}$. Angle $P=32^{\circ} . \quad P R=2.6 \mathrm{~m}$.
Calculate the length of $Q R$. Give your answer correct to 3 significant figures.

Centre No.					
Candidate No.					

Surname
Initial(s)

Paper Reference(s)

4400/3H

London Examinations IGCSE

Mathematics

Team Leader's use only

Paper 3H

Higher Tier
Specimen Paper
Time: 2 hours

Materials required for examination Nil

Items included with question papers Nil

Instructions to Candidates

In the boxes above, write your centre number and candidate number, your surname, initial(s) and signature.
The paper reference is shown at the top of this page. Check that you have the correct question paper and write the paper reference for which you have been entered.
Answer ALL the questions in the spaces provided in this question paper.
Show all the steps in any calculations and state the units.

Information for Candidates

There are 16 pages in this question paper. All blank pages are indicated.
The total mark for this paper is 100 . The marks for the various parts of questions are shown in round brackets, e.g. (2).
You may use a calculator.
A formula sheet is printed on the inside cover of this question paper.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers.
Work steadily through the paper.
Do not spend too long on one question.
Show all stages in any calculations.
If you cannot answer a question, leave it and attempt the next one. Return at the end to those you have left out.

IGCSE MATHEMATICS 4400

FORMULA SHEET - HGHER TIER

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Volume of sphere $=\frac{4}{3} \pi r^{3}$
Curved surface area of cone $=\pi r l$

Surface area of sphere $=4 \pi r^{2}$

> adj $=$ hyp $\times \cos \theta$
> opp $=\operatorname{hyp} \times \sin \theta$
> opp $=\operatorname{adj} \times \tan \theta$
or $\sin \theta=\frac{\text { opp }}{\text { hyp }}$
$\cos \theta=\frac{\text { adj }}{\text { hyp }}$
In any triangle $A B C$

$$
\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}
$$

Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Circumference of circle $=2 \pi r$
Area of circle $=\pi r^{2}$

$$
\text { Area of a trapezium }=\frac{1}{2}(a+b) h
$$

Volume of cylinder $=\pi r^{2} h$
Curved surface area
of cylinder $=2 \pi r h$

The Quadratic Equation
The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$, are given by

$$
x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}
$$

Answer ALL TWENTY THREE questions.
 Write your answers in the spaces provided.
 You must write down all stages in your working.

Leave
blank

1. The population of a village was 1750 .

The population fell by 12%.
Work out the new population.
2.

This rule is used to find how far apart to plant two bushes.

Add the heights of the bushes.
Divide your answer by 3 .

The heights of two bushes are $a \mathrm{~cm}$ and $b \mathrm{~cm}$.
The two bushes should be planted $d \mathrm{~cm}$ apart.
Write down a formula for d in terms of a and b.
3.

Diagram NOT accurately drawn

The diagram shows a paved surface.
All the corners are right angles.
Work out the area of the paved surface.
State the units of your answer.
4. (a) Work out $\frac{8}{9} \div \frac{2}{3}$

Give your answer as a mixed number.
(b) Work out $4 \frac{1}{2}-1 \frac{3}{5}$

Give your answer as a mixed number.
5. (a) Factorise $x^{2}+8 x$
(b) Simplify
(i) $x^{3} \times x^{5}$
(ii) $y^{6} \div y^{2}$
\qquad
\qquad
(c) Make t the subject of the formula $v=u+a t$

$$
t=
$$

6.

Use a ruler and compasses to construct the bisector of angle Q.
Show all your construction lines.
\qquad
7. Mortar is made from cement, lime and sand.

The ratio of their weights is $2: 1: 9$
Work out the weight of cement and the weight of sand in 60 kg of mortar.
cement kg
sand kg
8. $\mathscr{E}=\{$ Integers $\}$
$A=\{1,2,3,6\}$
$B=\{4,5\}$
$C=\{x: 6 \leq 3 x<18\}$
(a) List the elements of the set
(i) $A \cup B$,
(ii) C
(b) Find $A \cap B$.
9.

$A B C$ is a right-angled triangle.
$A B=4 \mathrm{~cm}, B C=6 \mathrm{~cm}$.
(a) Calculate the area of triangle $A B C$.
(b) Calculate the length of $A C$.

Give your answer correct to 3 significant figures.
cm
(c) Calculate the size of angle $B C A$.

Give your answer correct to 1 decimal place.
10. The length of a rod is 98 cm correct to the nearest centimetre.
(a) Write down the minimum length the rod could be.

C
(b) Work out the maximum total length of 6 of these rods.
\qquad
11. Solve the equation $x^{2}-6 x-27=0$
12. (a) Write down the gradient of the line with equation $y=3 x+5$
(b) Find the equation of the line which is parallel to the line with equation $y=3 x+5$ and passes through the point with coordinates $(4,10)$.
13.

Diagram NOT
Leave blank accurately drawn

The diagram shows triangle $A B C$.
$A C=7.2 \mathrm{~cm}$.
$B C=8.35 \mathrm{~cm}$.
Angle $A C B=74^{\circ}$.
(a) Calculate the area of triangle $A B C$.

Give your answer correct to 3 significant figures.
(b) Calculate the length of $A B$.

Give your answer correct to 3 significant figures.
14. Here is a 5 -sided spinner.

Leave
blank

Its sides are labelled 1, 2, 3, 4 and 5.
The spinner is biased.
The probability that the spinner will land on each of the numbers 1 to 4 is given in the table.

Number	1	2	3	4	5
Probability	0.36	0.1	0.25	0.15	

Alan spins the spinner once.
(a) Work out the probability that the spinner will land on 5 .

Bhavana spins the spinner once.
(b) Work out the probability that it will land on 3 or 4 .
\qquad

Chris spins the spinner 50 times.
(c) Work out an estimate for the number of times the spinner will land on 1.

Dylan spins the spinner twice.
(d) Work out the probability that
(i) the spinner will land on 2 both times,
\qquad
(ii) the spinner will land on an even number exactly once.
15.

Diagram NOT accurately drawn

Calculate the length of $C D$.
\qquad cm
16. The table gives information about the ages, in years, of 100 aeroplanes.

Age $(t$ years $)$	Frequency
$0<t \leq 5$	41
$5<t \leq 10$	26
$10<t \leq 15$	20
$15<t \leq 20$	10
$20<t \leq 25$	3

(a) Complete the cumulative frequency table.

Age $(t$ years $)$	Cumulative frequency
$0<t \leq 5$	
$0<t \leq 10$	
$0<t \leq 15$	
$0<t \leq 20$	
$0<t \leq 25$	

(b) On the grid, draw a cumulative frequency graph for your table.

Cumulative frequency

(c) Use your graph to find an estimate for the inter-quartile range of the ages. Show your method clearly.
17.

A weight is hung at the end of a beam of length L.
This causes the end of the beam to drop a distance d.
d is directly proportional to the cube of L.
$d=20$ when $L=150$
(a) Find a formula for d in terms of L.

$$
d=
$$

\qquad
(b) Calculate the value of L when $d=15$

$$
L=.
$$

(2)
18. Convert the recurring decimal 0.23 to a fraction.

Give your answer in its simplest form.
19. $\mathrm{f}(x)=\frac{1}{x+2}$
(a) Find the value of x which must be excluded from the domain of $\mathrm{f}(x)$.

$$
x=.
$$

\qquad
(1)
(b) Find the inverse function $\mathrm{f}^{-1}(x)$.

$$
\mathrm{f}^{-1}(x)=
$$

\qquad
20. $p=3^{8}$
(a) Express $p^{\frac{1}{2}}$ in the form 3^{k}, where k is an integer.
21. Simplify fully $\frac{x^{2}-10 x+25}{x^{2}-25}$
22.

$A B C D E F$ is a regular hexagon.

$$
\stackrel{\circledR}{O} A=\mathbf{a}, \quad \stackrel{\circledR}{O B}=\mathbf{b}
$$

(a) Write down, in terms of \mathbf{a} and \mathbf{b}, the vectors
(i) $\stackrel{\circledR}{A} B$
(ii) $\stackrel{\circledR}{F} C$
(b) Write down one geometrical fact about $A B$ and $F C$ which could be deduced from your answers to part (a).
\qquad
23. Solve the simultaneous equations

$$
\begin{gathered}
y=2 x-7 \\
x^{2}+y^{2}=61
\end{gathered}
$$

TOTAL FOR PAPER: 100 MARKS

Centre No.					
Candidate No.					

Surname
Initial(s)

Paper Reference(s)
4400/4H London Examinations IGCSE

Mathematics

Team Leader's use only

Paper 4H

Higher Tier
Specimen Paper
Time: 2 hours

Materials required for examination Nil

Items included with question papers Nil

Instructions to Candidates

In the boxes above, write your centre number and candidate number, your surname, initial(s) and signature.
The paper reference is shown at the top of this page. Check that you have the correct question paper and write the paper reference for which you have been entered.
Answer ALL the questions in the spaces provided in this question paper.
Show all the steps in any calculations and state the units.

Information for Candidates

There are 18 pages in this question paper. All blank pages are indicated.
The total mark for this paper is 100 . The marks for the various parts of questions are shown in round brackets, e.g. (2).
You may use a calculator.
A formula sheet is printed on the inside cover of this question paper.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers.
Work steadily through the paper.
Do not spend too long on one question.
Show all stages in any calculations.
If you cannot answer a question, leave it and attempt the next one. Return at the end to those you have left out.

IGCSE MATHEMATICS 4400
 FORMULA SHEET - HIGHER TIER

Pythagoras'

$$
a^{2}+b^{2}=c^{2}
$$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Volume of sphere $=\frac{4}{3} \pi r^{3}$
Curved surface area of cone $=\pi r l$

Surface area of sphere $=4 \pi r^{2}$

$$
\begin{aligned}
& \text { adj }=\text { hyp } \times \cos \theta \\
& \text { opp }=\operatorname{hyp} \times \sin \theta \\
& \text { opp }=\operatorname{adj} \times \tan \theta
\end{aligned}
$$

In any triangle $A B C$

$$
\text { or } \quad \sin \theta=\frac{\text { opp }}{\text { hyp }}
$$

$$
\cos \theta=\frac{\mathrm{adj}}{\mathrm{hyp}}
$$

$$
\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}
$$

Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

Circumference of circle $=2 \pi r$
Area of circle $=\pi r^{2}$

Area of a trapezium $=\frac{1}{2}(a+b) h$

The Quadratic Equation
The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$, are given by
$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Answer ALL TWENTY THREE questions.
 Write your answers in the spaces provided.
 You must write down all stages in your working.

Leave
blank

1. This is a recipe for making a Tuna Bake for $\mathbf{4}$ people.

> Tuna Bake
> Ingredients for 4 people.
> 400 g of tuna
> 400 g of mushroom soup
> 100 g of grated cheddar cheese
> 4 spring onions
> 250 g of breadcrumbs

Work out the amounts needed to make a Tuna Bake for $\mathbf{1 0}$ people.
\qquad g of tuna
\qquad g of mushroom soup
g of grated cheddar cheese
\qquad spring onions
g of breadcrumbs
2. (a) Solve $5 x-7=2 x+11$

$$
x=
$$

\qquad
(b) Solve $\frac{16-y}{3}=3$

$$
y=
$$

\qquad
3.

(a) Describe fully the single transformation which takes shape \mathbf{A} onto shape \mathbf{B}.
(b) Describe fully the single transformation which takes shape \mathbf{A} onto shape \mathbf{C}.
\qquad
\qquad
4. Jo got 36 out of 80 in an English test.

Work out 36 out of 80 as a percentage.
(Total 2 marks)
5. Work out the value of $\sqrt{\frac{83.5 \times 978}{1025+222}}$

Give your answer correct to 3 significant figures.
\qquad
6. (a) Expand
(i) $3(2 c+5)$
(ii) $y(y-5)$
\qquad
\qquad
(b) Factorise $15 m+10$
(c) Expand and simplify $(x+5)(x-3)$
7. Express 72 as the product of powers of its prime factors.
8. The table gives information about the weights, in kilograms, of 100 donkeys.

Weight of donkeys $(w \mathrm{~kg})$	Frequency
$65<w \leq 70$	4
$70<w \leq 75$	10
$75<w \leq 80$	34
$80<w \leq 85$	32
$85<w \leq 90$	16
$90<w \leq 95$	4

(a) Write down the modal class interval.
(b) Work out an estimate for the mean weight of the donkeys.
9.

Diagram NOT accurately drawn

Leave blank
(b) Work out the volume of the cylinder.

Give your answer correct to 3 significant figures.
\qquad
10.

Diagram NOT accurately drawn

Angle $Q=90^{\circ}$. Angle $P=32^{\circ} . \quad P R=2.6 \mathrm{~m}$.
Calculate the length of $Q R$. Give your answer correct to 3 significant figures.
\qquad
11. The Andromeda Galaxy is 21900000000000000000 km from the Earth.
(a) Write 21900000000000000000 in standard form.

Leave
blank

Light travels $9.46 \times 10^{12} \mathrm{~km}$ in one year.
(b) Calculate the number of years that light takes to travel from the Andromeda Galaxy to the Earth.
Give your answer in standard form correct to 2 significant figures.
\qquad
12. Solve the simultaneous equations
$6 x+2 y=21$
$4 x+3 y=19$

$$
x=
$$

\qquad
\qquad
13. (a) Differentiate with respect to x

$$
y=x^{3}-3 x^{2}+5
$$

(b) Hence find the coordinates of the minimum point of the curve

$$
y=x^{3}-3 x^{2}+5, x>0 .
$$

14.

A, B, C and D are four points on the circumference of a circle.
$T A$ is the tangent to the circle at A.
Angle $D A T=30^{\circ}$.
Angle $A D C=132^{\circ}$.
(a) (i) Calculate the size of angle $A B C$.
(ii) Give a reason for your answer.
\qquad
\qquad
(b) (i) Calculate the size of angle $C B D$.
(ii) Give reasons for your answer.
\qquad
\qquad
15. A bag contains 10 coloured discs.

4 of the discs are red and 6 of the discs are black.
Asif is going to take two discs at random from the bag without replacement.
(a) Complete the tree diagram.

(b) Work out the probability that Asif will take two black discs.
\qquad
(c) Work out the probability that Asif will take two discs of different colours.
\qquad
16.

Leave
blank
17. (a) Rationalise $\frac{10}{\sqrt{2}}$
\qquad
(b) (i) Express $\sqrt{18}$ in the form $k \sqrt{2}$.
(ii) Express $(4+\sqrt{18})^{2}$ in the form $a+b \sqrt{2}$.
\qquad
\qquad
18. (a) Complete the table of values for $y=x^{3}-2 x^{2}-5 x$

x	-2	-1	0	1	2	3	4
y		2					

(b) On the grid, draw the graph of $y=x^{3}-2 x^{2}-5 x$

The x coordinates of the points of intersection of the curve and a certain straight line give the solutions to the equation $x^{3}-2 x^{2}-6 x+1=0$
(c) Find the equation of the straight line.
19. The unfinished histogram and table give information about the heights, in centimetres, of the Year 11 students at Mathstown High School.

Height $(h \mathrm{~cm})$	Frequency
$140 \leq h<150$	15
$150 \leq h<160$	
$160 \leq h<165$	20
$165 \leq h<170$	
$170 \leq h<180$	
$180 \leq h<190$	12
$190 \leq h<210$	

(a) Use the histogram to complete the table.
(b) Use the table to complete the histogram.
20.

$\mathrm{n}(\mathscr{C})=32, \mathrm{n}\left(A^{\prime}\right)=20$ and $\mathrm{n}\left(A \cap B^{\prime}\right)=8$.
Find
(i) $\mathrm{n}(A)$,
(ii) $\mathrm{n}(A \cap B)$.
21. Show that the equation

$$
\frac{2}{(x+1)}-\frac{1}{(x+2)}=\frac{1}{2}
$$

can be written in the form

$$
x^{2}-x-4=0
$$

22.

The radius of the base of a cone is 3.4 cm and its slant height is 8.1 cm .
(a) Calculate the total surface area of the cone.

Give your answer correct to 3 significant figures.

A larger, mathematically similar cone has a volume 64 times the volume of the above cone.
(b) Calculate the radius of the base of the larger cone.
23. Make y the subject of the formula $x=\sqrt{\frac{y-a}{y-b}}$
(Total 4 marks)

Page Total

TOTAL FOR PAPER: 100 MARKS

END

BLANK PAGE

London Examinations

IGCSE

IGCSE Mathematics (4400)

Mark Schemes for Specimen Papers with Specification Grid

Paper 1F (Foundation Tier)

Paper 1F - Specification Grid

Qu.	Spëcfication Ref	Number	Algebra	Shape, space \& measures	Handling data	Grade G	Grade F	Grade E	Grade D	Grade C	Common to Paper 3H
1	1.1, 1.4	4				3		1			
2	3.1		3			1	2				
3	1.1	5				3	2				
4	4.6			2		2					
5	6.1, 6.2				6	4	2				
6	4.2, 5.2			4		2	2				
7	2.3		5			2	3				
8	1.4, 1.9	6					3	3			
9	6.3				6		2		4		(b)(c) \rightarrow Q13
10	4.4			3			3				
11	2.2		4					2	2		(b) \rightarrow Q5
12	1.2	6					2	2	2		(c) \rightarrow Q4
13	4.9			2				2			
14	4.5			5				3		2	(b) \rightarrow Q6
15	2.3, 2.4		8			2		3	3		(c) \rightarrow Q2
16	6.3				6			4		2	
17	1.6	3							3		Q1
18	4.4			3				1	2		
19	4.9			4					4		Q3
20	1.10, 4.4	3								3	
21	4.8			3						3	Q9
22	1.7	3								3	Q7
23	1.8	2								2	(a) \rightarrow Q10
24	1.5	4								4	Q8
Total		36	20	26	18	19	21	21	20	19	

Paper 1F - Mark Scheme

Paper 1F - Mark Scheme

No	Spec	Grade	Working	Answer	Mark	Notes	
6 (a)	4.2	G		B, E, H	2	B2	B1 for 2\{ and not more than 1%
(b)(i) (ii)	5.2 5.2	F F		F or I 2	2	B1 B1	more than 1% for either F or I or both (dep on first B1)
7 (a)	2.3	G	$\begin{aligned} & 2 \times 12+2 \times 7 \\ & \text { or } 24 \& 14 \text { seen } \end{aligned}$	38	2	M1	
(b)	2.3	F	$\begin{aligned} & 2 \times 16+2 W=50 \\ & 2 W=18 \end{aligned}$		3	$\begin{array}{\|l\|} \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	
$8 \quad$ (a)(i)	1.4	F	10 seen	44.89	2	B1	
	1.9	E		40		B1	
(b)	1.4	F		8.7	1	B1	
(c)	1.4	F		1728	1	B1	
(d)	1.4	E			2	M1	
				1058		A1	
9 (a)	6.3	F	$\begin{aligned} & (1, \mathrm{H})(2, \mathrm{H})(3, \mathrm{H})(4, \mathrm{H})(5, \mathrm{H}) \\ & (1, \mathrm{~T})(2, \mathrm{~T})(3, \mathrm{~T})(4, \mathrm{~T})(5, \mathrm{~T}) \end{aligned}$		2	B2	B2 for all 10 (condone omission of (3,H)) B1 for 6 correct
(b)	6.3	D	$\begin{aligned} & 1- \\ & (0.36+0.1+0.25+ \\ & 0.15) \end{aligned}$		2	M1	
(c)	6.3	D	0.36×50	$\begin{aligned} & 0.14 \\ & 18 \end{aligned}$	2	A1 M1 A1	

Paper 1F - Mark Scheme

No	Spec	Grade	Working	Answer	Mark	Notes
10 (a) (b)	$\begin{aligned} & 4.4 \\ & 4.4 \end{aligned}$	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~F} \end{aligned}$	(a) $\times(3-4)$	$\begin{aligned} & 1.5-2 \\ & 4.5-8 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$
11 (a) (b)	2.2 2.2	E D		$\begin{aligned} & 7 b-4 c \\ & x(x+8) \end{aligned}$	2 2	B2 B1 for $7 b$ B1 for -4 c B2 B1 for $x(\ldots)$ or $x+8$ seen
12 (a) (b) (c)	$\begin{aligned} & 1.2 \\ & 1.2 \\ & 1.2 \end{aligned}$	F E D	$\begin{aligned} & \div \text { by } 5 \& \times \text { by } 4 \\ & \frac{8}{9}-\frac{6}{9} \\ & \frac{8}{9} \times \frac{3}{2} \end{aligned}$	68 $\frac{2}{9}$ $1 \frac{1}{3}$	2 2 2	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$
13	4.9	E	eg $56 \div(4 \times 2)$	7	2	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$
(a) (b)	4.5 4.5	E	$\begin{aligned} & R Q 7.7 \mathrm{~cm} \pm 0.2 \mathrm{~d} \\ & 0.2 \mathrm{~cm} \\ & \text { construction arcs } \end{aligned}$	$P R 6.4 \mathrm{~cm} \pm$ $\angle R 35^{\circ} \pm 2^{\circ}$ correct Δ \angle bisector	2	B1 B1 B1 within guidelines M1 A1 within guidelines

Paper 1F - Mark Scheme

Paper 1F - Mark Scheme

No		Spec	Grade	Working	Answer	Mark	Notes	
18		4.4	E D D	line on bearing $137 \pm 2^{\circ}$ line on bearing $213 \pm 2^{\circ}$ \times marked within gu	lines	3	M1 M1 A1	
19		4.9	D	$\begin{aligned} & \text { eg } 7 \times 2+4 \times 8+ \\ & 10 \times 2 \\ & 14+32+20 \end{aligned}$	$\begin{aligned} & 66 \\ & \mathrm{~m}^{2} \end{aligned}$	4	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	for splitting up area 2 correct products
20		$\begin{gathered} 1.10 / \\ 4.4 \end{gathered}$	C	$\begin{aligned} & 2.4 \text { seen } \\ & 136 \div 2.4 \text { or } 136 \div \\ & 2.24 \end{aligned}$	55	3	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	
21		4.8	C	$\begin{aligned} & 4^{2}+6^{2} \text { or } 52 \text { seen } \\ & \sqrt{36+16} \end{aligned}$	7.21	3	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	dep on first M1 Accept 3 sf or better
22		1.7	C	$60 \div 12$ or 5 seen	$\begin{aligned} & 10 \\ & 45 \end{aligned}$	3	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	
23	(a) (b)	$\begin{aligned} & 1.8 \\ & 1.8 \\ & \hline \end{aligned}$	C C		$\begin{aligned} & 97.5 \\ & 98.5 \end{aligned}$	2	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	Accept 98.499 or better
24	$\begin{aligned} & \text { (a)(i) } \\ & \text { (ii) } \\ & \text { (b) } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$		$\begin{aligned} & 1,2,3,4,5,6 \\ & 2,3,4,5 \\ & \phi \\ & \hline \end{aligned}$	3	$\begin{aligned} & \hline \text { B1 } \\ & \text { B2 } \\ & \text { B1 } \\ & \hline \end{aligned}$	B1 for 2,3,4,5,6

London Examinations

IGCSE

IGCSE Mathematics (4400)

Mark Schemes for Specimen Papers with Specification Grid

Paper 2F (Foundation Tier)

Paper 2F - Specification Grid

Qu.	Spectication Ref	Number	Algebra	Shape, space \& measures	Handling data	Grade G	Grade F	Grade E	Grade D	Grade C	Common to Paper 4H
1	1.2, 1.6	4				4					
2	1.3	4				2	2				
3	$\begin{aligned} & 3.3,4.1, \\ & 4.3,4.4 \end{aligned}$		2	5		6	1				
4	3.1		5			2	3				
5	6.2				7	3	4				
6	4.2, 4.3			3		1	2				
7	4.4			2		2					
8	1.6	4					2		2		(b) \rightarrow Q4
9	3.3		3				3				
10	4.9			2			2				
11	1.10	4						4			
12	3.3		5					5			
13	6.1				4			4			
14	4.1			4				4			
15	1.3	3						3			
16	1.7	3							3		Q1
17	2.4		6						3	3	Q2
18	5.2			5					5		Q3
19	1.11	3								3	Q5
20	2.2		5						3	2	Q6
21	1.4	3								3	Q7
22	6.2				7				1	6	Q8
23	4.9			4					2	2	Q9
24	4.8			3						3	Q10
Total		28	26	28	18	20	19	20	19	22	

Paper 2F - Mark Scheme

Paper 2F - Mark Scheme

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No \& Spec \& Grade \& Working \& Answer \& Mark \& Not \& \\
\hline \begin{tabular}{l}
12 (a) \\
(b) \\
(c)
\end{tabular} \& \[
\begin{aligned}
\& 3.3 \\
\& 3.3 \\
\& 3.3
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{E} \\
\& \mathrm{E} \\
\& \mathrm{E}
\end{aligned}
\] \& \& \begin{tabular}{l}
\[
-7,-4,2,5
\] \\
pts plotted line drawn 1.4-1.6
\end{tabular} \& \[
\begin{aligned}
\& 2 \\
\& 2 \\
\& 1
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { B2 } \\
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { B1 } \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
B1 for at least two \(\checkmark\) \\
ft from line
\end{tabular} \\
\hline 13 \& 6.1 \& E \& \(360^{\circ} \div 40\) oe \& \[
\begin{aligned}
\& \hline \mathrm{U}\left(126^{\circ}\right) \mathrm{F}\left(81^{\circ}\right) \\
\& \mathrm{S}\left(108^{\circ}\right) \mathrm{G}\left(45^{\circ}\right)
\end{aligned}
\] \& 4 \& \begin{tabular}{l}
B1 \\
B2 \\
B1
\end{tabular} \& \begin{tabular}{l}
for \(360^{\circ} \div 40\) oe seen for 4 sectors within guidelines \\
(B1 for 2 sectors within guidelines) \\
(dep on 2 of previous 3 marks) for correct labelling
\end{tabular} \\
\hline \begin{tabular}{l}
\(14 \quad\) (a)(i) \\
(ii) \\
(b)(i)
\end{tabular} \& 4.1

4.1 \& E \& \multicolumn{2}{|l|}{65
180° in a $!$ and base $\angle \mathrm{s}$ of an
isosceles \angle are equal 30°
exterior $\angle=$ sum of interior $\angle \mathrm{s}$ at

the other two vertices} \& $$
2
$$

$$
2
$$ \& \[

$$
\begin{aligned}
& \hline \text { B1 } \\
& \text { B1 } \\
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$

\] \& | ft from " 65° " |
| :--- |
| Accept $\angle \mathrm{s}$ on a st line and \angle sum of ! |

\hline 15 \& 1.3 \& E \& \multicolumn{2}{|l|}{\[
\frac{1}{4}, 0.299,30 \%, \frac{1}{3}, 0.37, \frac{2}{5} oe

\]} \& 3 \& | M1 |
| :--- |
| A2 | \& for clear attempt to express all numbers in the same format correct order (A1 for 2 correct conversions)

\hline 16 \& 1.7 \& D \& \& $$
\begin{aligned}
& 1000,1000 \\
& 250,10,625
\end{aligned}
$$ \& 3 \& B3 \& B2 for three correct B1 for one correct

\hline | 17 (a) |
| :--- |
| (b) | \& \[

2.4
\]

$$
2.4
$$ \& \[

\bar{D}
\]

C \& \[
$$
\begin{aligned}
& 5 y-2 y=11+7 \\
& 3 y=18 \\
& 16-q=3 \times 3 \\
& -q=" 9 "-16 \\
& \text { or } q=16-" 9 "
\end{aligned}
$$

\] \& | 6 |
| :--- |
| 7 | \& \[

3
\]

$$
3
$$ \& \[

$$
\begin{aligned}
& \hline \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \hline
\end{aligned}
$$
\] \&

\hline | 18 (a) |
| :--- |
| (b) | \& \[

$$
\begin{aligned}
& 5.2 \\
& 5.2
\end{aligned}
$$

\] \& | D |
| :--- |
| D | \& \& | Reflection y-axis |
| :--- |
| Rotation 90° clockwise about O | \& \[

$$
\begin{aligned}
& 2 \\
& 3
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& or -90°

\hline 19 \& 1.11 \& C \& \& 8.09 \& 3 \& B3 \& B2 for $65.48 \ldots$ or better seen B1 for 81663 or 1247 or 65.5 seen

\hline | $20 \quad$ (a)(i) |
| :--- |
| (ii) |
| (b) |
| (c) | \& \[

$$
\begin{aligned}
& 2.2 \\
& 2.2 \\
& 2.2 \\
& 2.2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline \mathrm{D} \\
& \mathrm{D} \\
& \mathrm{D} \\
& \mathrm{C}
\end{aligned}
$$

\] \& $x^{2}-3 x+5 x-15$ \& \[

$$
\begin{aligned}
& \hline 6 c+15 \\
& y^{2}-10 y \\
& 5(3 m+2) \\
& \\
& x^{2}+2 x-15 \\
& \hline
\end{aligned}
$$

\] \& | 2 |
| :--- |
| 1 2 | \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \&

\hline 21 \& 1.4 \& C \& \& $2^{3} \times 3^{2}$ \& 3 \& B3 \& | B2 for $2 \times 2 \times 2 \times 3 \times 3$ |
| :--- |
| B1 for correct prime factors |

\hline
\end{tabular}

Paper 2F - Mark Scheme

Edexcel International
London Examinations
IGCSE

IGCSE Mathematics (4400)

Mark Schemes for Specimen Papers with Specification Grid

Paper 3H (Higher Tier)

Paper 3H - Specification Grid

Qu.	Spectication Ref	Number	Algebra	Shape, space \& measures	Handling data	Grade D	Grade C	Grade B	Grade A	Grade A*	Common to Paper 1F
1	1.6	3				3					Q17
2	2.3		3			3					Q15
3	4.9			4		4					Q19
4	1.2	5				2		3			(a) \rightarrow Q12
5	2.1,2.2,2.3		6			2	4				(a) \rightarrow Q11
6	4.5			2			2				Q14
7	1.7	3					3				Q22
8	1.5	4					4				Q24
9	4.8, 4.9			8		2	6				(b) \rightarrow Q21
10	1.8	3					1	2			(a) \rightarrow Q23
11	2.7		3					3			
12	3.3		3					3			
13	4.8			5					5		
14	6.3				12	4	2		2	4	(a)(c) \rightarrow Q9
15	4.10			3				3			
16	6.1, 6.2				5			5			
17	2.5		5						5		
18	1.3	3							3		
19	3.2		3						3		
20	1.4	3								3	
21	2.2		3							3	
22	5.1			4					3	1	
23	2.7		7							7	
Total		24	33	26	17	20	22	19	21	18	

Paper 3H - Mark Scheme

No	Spec	Grade	Working	Answer	Mark	Notes		
1		1.6	D	$\frac{12}{100} \times 1750$ or 210 $1750-" 210 "$				

Paper 3H - Mark Scheme

No	Spec	Grade	Working	Answer	Mark	Notes	
11	2.7	B	$(x-9)(x+3)=0$	$\begin{aligned} & 9 \\ & -3 \end{aligned}$	3	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	
12 (a) (b)	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$		$\begin{aligned} & 3 \\ & y=3 x-2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B2 } \end{aligned}$	B1 for $y=3 x+c$ where $c \neq 5$
$13 \quad \text { (a) }$ (b)	$\begin{aligned} & \hline 4.8 \\ & 4.8 \end{aligned}$	A A	$\begin{aligned} & \frac{1}{2} \times 7.2 \times 8.35 \sin 74^{\circ} \\ & 7.2^{2}+8.35^{2} \\ & -2 \times 7.2 \times 8.35 \cos 74^{\circ} \\ & 51.84+69.7225 \\ & -33.1426 \ldots \end{aligned}$	28.9 9.40	2 3	M1 A1 M1 M1 A1	28.9 or better or 88.419 seen 9.40 or better
(a) (b) (c) (d)(i) (ii)	$\begin{aligned} & \hline 6.3 \\ & 6.3 \\ & 6.3 \\ & 6.3 \\ & 6.3 \end{aligned}$	D C D A A^{*}	$\begin{aligned} & 1-(0.36+0.1+0.25 \\ & \\ & +0.15) \\ & 0.25+0.15 \\ & \\ & 0.36 \times 50 \\ & \\ & 0.1 \times 0.1 \\ & \\ & 0.25 \& 0.75 \text { seen } \\ & 0.25 \times 0.75 \text { or } 0.1875 \\ & \times 2 \text { oe } \end{aligned}$	$\begin{aligned} & 0.14 \\ & 0.4 \\ & 18 \\ & 0.01 \\ & \\ & \\ & 0.375 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 2 \\ & 2 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	
15	4.10	B	$\begin{aligned} & \frac{C D}{11}=\frac{6}{8} \\ & C D=11 \times \frac{6}{8} \end{aligned}$	8.25	3	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	
16 (a) (b) (c)	$\begin{aligned} & \hline 6.1 \\ & 6.2 \\ & 6.2 \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~B} \\ & \\ & \hline \mathrm{~B} \end{aligned}$	25 (or $25^{1 / 4}$) \& 75 (or $753 / 4$) indicated	$\begin{aligned} & 41,67,87,97,100 \\ & \text { Points correct } \\ & \text { Curve or lines } \\ & \approx 11.5 \text { (curve) } \\ & \approx 12 \text { (lines) } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	ft ft from graph if B1 or B2 in (c)
(a) (b)	2.5 2.5	A A	$\begin{aligned} & d=k L^{3} \\ & 20=k \times 150^{3} \end{aligned}$ $L^{3}=\frac{15}{{ }^{\prime \prime} k^{\prime \prime}}$	$\begin{aligned} & d=0.0000059 L^{3} \\ & 136 \end{aligned}$	2	M1 M1 A1 M1 A1	$k \neq 1$ Accept 2 or more sf Accept 135.57-136.5
18	1.3	A	$\begin{aligned} & 10 x=2 . \dot{3} \\ & 9 x=2.1 \end{aligned}$	$\frac{7}{30}$	3	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	

Paper 3H - Mark Scheme

No	Spec	Grade	Working \quad Answer	Mark	Notes	
19 (a) (b)	$\begin{aligned} & 3.2 \\ & 3.2 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	eg clear attempt to make x the subject of -2 $y=\frac{1}{x+2}$ $\frac{1}{x}-2$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 M1 or flow diagram method $+2 \rightarrow$ divide into 1 $-2 \leftarrow$ divide into 1 A1	
20 (a) (b)	$\begin{aligned} & \hline 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & \mathrm{A}^{*} \\ & \mathrm{~A}^{*} \end{aligned}$	$\begin{aligned} & 3^{4} \\ & 2^{-3} \\ & 5^{2} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	
21	2.2	A*	$\frac{(x-5)^{2}}{(x+5)(x-5)}$ $\frac{(x-5)}{(x+5)}$	3	M1 for $(x-5)^{2}$ M1 for $(x+5)(x-5)$ A1	
$22 \quad \text { (a)(i) }$ (b)	$\begin{align*} & 5.1 \\ & 5.1 \tag{ii}\\ & 5.1 \end{align*}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A}^{*} \end{aligned}$	$2 \times(\mathrm{i})$ $\mathbf{b}-\mathbf{a}$ $2(\mathbf{b}-\mathbf{a})$ $A B \\| F C$ or $C F=2 A B$	3	$\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { B1 } & \begin{array}{l} \text { must have } \\ \text { correct (a) } \end{array} \\ \hline \end{array}$	
23	2.7	A*	$\begin{aligned} & x^{2}+(2 x-7)^{2}=61 \\ & x^{2}+4 x^{2}-28 x+49=61 \end{aligned}$ $\begin{aligned} & 5 x^{2}-28 x-12=0 \\ & (5 x+2)(x-6)=0 \end{aligned}$ $x=-\frac{2}{5}$ $x=6$ $x=-\frac{2}{5}, y=7 \frac{4}{5}$ or $x=6, y=5$	7	M1 M1 M1 M1 A1 A1 A1 for both	

London Examinations

IGCSE

IGCSE Mathematics (4400)

Mark Schemes for Specimen Papers with Specification Grid

Paper 4H (Higher Tier)

Paper 4H - Specification Grid

Qu.	Spècfication Ref	Number	Algebra	Shape, space \& measures	Handling data	Grade D	Grade C	Grade B	Grade A	Grade A*	Common to Paper 2F
1	1.7	3				3					Q16
2	2.4		6			3	3				Q17
3	5.2			5		5					Q18
4	1.6	2				2					Q8
5	1.11	3					3				Q19
6	2.2		5			3	2				Q20
7	1.4	3					3				Q21
8	6.2				5	1	4				Q22
9	4.9			4		2	2				Q23
10	4.8			3			3				Q24
11	1.9	3						3			
12	2.6		4					4			
13	3.4		6					2	4		
14	4.6			5				5			
15	6.3				7			2		5	
16	4.9			3					3		
17	1.4	5							2	3	
18	3.3		6					4	2		
19	6.1				6				6		
20	1.5	3							3		
21	2.2		4							4	
22	4.9, 4.10			5						5	
23	2.3		4							4	
Total		22	35	25	18	19	20	20	20	21	

Paper 4H - Mark Scheme

No	Spec	Grade	Working	Answer	Mark	Note	
1	1.7	D		$\begin{aligned} & 1000,1000 \\ & 250,10,625 \end{aligned}$	3	B3	B2 for three correct B1 for one correct
$\begin{equation*} 2 \tag{a} \end{equation*}$ (b)	2.4 2.4	D C	$\begin{aligned} & 5 y-2 y=11+7 \\ & 3 y=18 \\ & 16-q=3 \times 3 \\ & -q=" 9 "-16 \\ & \text { or } q=16-" 9 " \end{aligned}$	6 7	3 3	M1 M1 A1 M1 M1 A1	
$\begin{array}{\|l\|} \hline 3 \\ \hline \end{array}$ (b)	$\begin{gathered} 5.2 \\ 5.2 \end{gathered}$	D D		Reflection y-axis Rotation 90° clockwise about O	2	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$\text { or }-90^{\circ}$
4	1.6	D	$\frac{36}{80} \text { or } 0.45$	45	2	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	
5	1.11	C		8.09	3	B3	B2 for 65.48... or better seen B1 for 81663 or 1247 or 65.5 seen
6 (a)(i) (ii) (b) (c)	$\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.2 \\ & 2.2 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{D} \\ & \mathrm{D} \\ & \mathrm{C} \end{aligned}$	$x^{2}-3 x+5 x-15$	$\begin{aligned} & 6 c+15 \\ & y^{2}-10 y \\ & 5(3 m+2) \\ & \\ & x^{2}+2 x-15 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	
7	1.4	C		$2^{3} \times 3^{2}$	3	B3	B2 for $2 \times 2 \times 2 \times 3 \times 3$ B1 for correct prime factors
8 (a) (b)	$\begin{aligned} & \hline 6.2 \\ & 6.2 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 67.5 \times 4+72.5 \times 10 \\ & +77.5 \times 34+82.5 \times 32 \\ & +87.5 \times 16+92.5 \times 4 \\ & 270+725+2635+2640 \\ & +1400+370 \text { or } 8040 \\ & " 8040 " \div 100 \end{aligned}$	$75<w \leq 80$ 80.4	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	B1 M2 M1 A1	M1 if consistent values other than mid-interval values used dep on at least M1
$\begin{array}{ll} \hline 9 & \text { (a) } \end{array}$ (b)	$\begin{aligned} & 4.9 \\ & 4.9 \end{aligned}$	D C	$\begin{aligned} & \pi \times 4.7^{2} \\ & " 69.4 " \times 3.6 \end{aligned}$	$\begin{aligned} & 69.397 \ldots \\ & 249.832 \ldots \end{aligned}$	2 2	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	for 69.4 or better for 250 or better
10	4.8	C	$2.6 \sin 32^{\circ}$	1.3777...	3	$\begin{aligned} & \hline \text { M2 } \\ & \text { A1 } \end{aligned}$	for 1.38 or better
11 (a) (b)	$\begin{aligned} & 1.9 \\ & 1.9 \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { B } \end{aligned}$	$\frac{" 2.19 \times 10^{19} "}{9.46 \times 10^{12}}$	2.19×10^{19} 2.3×10^{6}	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 M1 A1	for 2.3×10^{6} or better

Paper 4H - Mark Scheme

No	Spec	Grade	Working	Answer	Mark	Notes
12	2.6	B	$\begin{gathered} \text { eg } 18 x+6 y=63 \\ 8 x+6 y=38 \\ \\ 10 x=25 \\ \\ \text { eg } 4 \times 2.5+3 y=19 \end{gathered}$	$x=2.5$ $y=3$	4	M1 multiplication of both equations by appropriate A1 numbers addition or subtraction to obtain one correct M1 solution (dep) substitution for x or y for second correct solution A1
13 (a) (b)	3.4 3.4	B A	$\begin{aligned} & " 3 x^{2}-6 x "=0 \\ & 3 x(x-2)=0 \\ & x=0 \text { or } x=2 \end{aligned}$	$\frac{\mathrm{dy}}{\mathrm{dx}}=3 x^{2}-6 x$ $(2,1)$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	B2 B1 for $3 x^{2}$ B1 for $-6 x$ M1 M1 A1 A1 B1
14 (a)(i) (ii) (b)(i) (ii)	4.6 4.6	B B	opposite $\angle \mathrm{s}$ of a cyclic quadrilateral$\angle A B D$ or $\angle A C D=30^{\circ}$(alternate segment theorem)eg $\angle C B D=$ "48" $-\angle A B D(\angle$ sum oftriangle $\& \angle \mathrm{~s}$ in the same segment $)$		2 3	$\begin{aligned} & \text { B1 } \\ & \\ & \text { B1 } \end{aligned}$
(a) (b) (c)	6.3 6.3 6.3	B A* A*	$\begin{aligned} & \frac{4}{10}, \frac{6}{10} \\ & \frac{3}{10} \times \frac{5}{9} \\ & \frac{6}{9}, \frac{4}{9}, \frac{5}{9} \\ & \frac{4}{10} \times \frac{6}{9} \text { or } \frac{6}{10} \times \frac{4}{9} \\ & \text { sum of both products } \end{aligned}$	on LH branches on RH branches $\frac{30}{90}$ oe $\frac{48}{90}$	2 2 3	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$
16	4.9	A	$\begin{aligned} & \frac{80}{360} \times \pi \times 20 \text { or } 13.96 \\ & +20 \end{aligned}$	33.96...	3	M1 M1 A1 for 34.0 or better
(a) (b)(i) (ii)	1.4 1.4	A $\begin{aligned} & A^{*} \\ & A^{*} \end{aligned}$	$\frac{10 \sqrt{2}}{\sqrt{2} \times \sqrt{2}}$ $16+8 \sqrt{18}+18$	$\begin{aligned} & 5 \sqrt{2} \\ & 3 \sqrt{2} \\ & \\ & 34+24 \sqrt{2} \end{aligned}$	2 3	M1 A1 B1 M1 A1

Paper 4H - Mark Scheme

Telephone: +44 (0) 1623450781
Fax: +44 (0) 1623450481
Email: intpublications@linneydirect.com
Order Code UG013054 J uly 2003 Issue 1
For more information on Edexcel International, please contact our
International Customer Relations Unit on +44 (0) 1908847750

