Mark Scheme Summer 2009

IGCSE

IGCSE Mathematics (4400)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Services on + 441204770 696, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

Summer 2009
Publications Code UG021472
All the material in this publication is copyright
© Edexcel Ltd 2009

Contents

1. Paper 1F Mark Scheme 5
2. Paper 2F Mark Scheme 15
3. Paper 3H Mark Scheme 21
4. Paper 4H Mark Scheme 35

Except for questions* where the mark scheme states otherwise, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method. [* Questions 15(b) and 18(b)]

Q	Working	Answer	Mark		
1	a	6012	1	B1	cao
b		6800	1	B1	cao
c	tens	1	B1	Accept 80, 10, T	
d	803	1	B1	cao	

2	a	54 63	2	B2	B1 each
b	eg Add 9, multiples of 9, 9 times table	1	B1		
c	180	1	B1	cao	

3 ai		940 pm	2	B1	Allow 20 to 10 pm
ii		2140		B1	cao
b		-2	1	B1	cao
C		-8 indicated	1	B1	Allow $\pm 1 / 2$ division

4 a	75	1	B1	cao	
b		USA	1	B1	Accept any clear indication
c	bar		1	B1	Accept 25 < bar < 30

6 ai		22 24	4	B1	cao
ii		28		B1	cao
iii		25		B1	cao
iv		23 or 29		B1	
bi		$\frac{1}{9}$	3	B1	
ii		$\frac{5}{9}$		M1	denominator 9 numerator 5

7	ai	2.645751311	2	B1	for at least 5 figures
ii		2.65		B1	ft from "2.645..." if at least 3 dp
bi		0.0841	2	B1	cao
ii		0.08		B1	ft from "0.0841" if of equal difficulty
c	$3.375+0.4$		2.775	M1	for 3.375 or 0.4
				A1	cao

8 a	144561010101010 or $\frac{10+1}{2}$ or $5 \frac{1}{2}$ or 6,10		2	M1	for a clear attempt to list in order	
		8		A1	cao	
b		9	2	B2	B1 for 1-10, $10-1$	
						Total 4 marks

9 a		$4 q$	1	B1	Accept $4 \times q, q 4$ etc
b		$5 n p$	1	B1	Do not accept \times signs Accept $n 5 p, 5 p n, 5(p n)$ etc
c		7	1	B1	cao
d	$8 \mathrm{y}=5+1$ or $8 \mathrm{y}=6$		2	M1	May be implied by correct answer
		$3 / 4$ oe		A1	

| 10 a | eg 0.666..., 0.7, 0.65, 0.625 | | 2 | B2 | for $\frac{5}{8} \frac{13}{20} \frac{2}{3} \frac{7}{10}$ or for correct decimal equivalents |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| | | $\frac{5}{8} \frac{13}{20} \frac{2}{3} \frac{7}{10}$ | | B1 for 3 fractions in correct order or
 for 2 fractions correctly converted to
 decimals (at least 2 dp rounded or truncated)
 or for 2 fractions expressed as equivalent fractions
 with a denominator of 120 | |
| b | $\frac{9}{12}-\frac{5}{12}$ | | 2 | M1 | Accept $\frac{18}{24}-\frac{10}{24}$ or $\frac{36}{48}-\frac{20}{48}$ |

11 a	$\frac{180-48}{2}$		2	M 1	
		66		A 1	cao
b	$180-" 66^{\prime}$ or 114 or $\angle A B C=" 66^{\circ} "$		M 1		
	$360-(69+106+" 114 ")$ or $360-(106+69+48+" 66 ")$		M 1		
		71		A 1	ft from "66"

12 a	$80 \times \frac{2}{5}, 2 \times \frac{80}{5}$		2	$\mathrm{M1}$	Also award for 80:32 or 32:80
		32		A1	cao
b	$3+1$ or 4		2	M1	Also award for 60:20 or 20:60
		20		A1	cao

13	$\frac{180-48}{2}$		3	$M 2$	for 40×13.25 oe or $\frac{40}{60} \times 795$ oe
				$M 1$ for $\frac{40}{60} \times(13 \times 60+15)$ or for $40 \times$ time eg 40×13.15 or 526 seen or 40×795 or $40 \times 13 . \ldots$	
		530		A1	cao

14	correct enlargement vertices $(10,10)(15,10)(15,20)$	3	B3	B2 for translation of correct shape or 2 vertices correct or for enlargement $1 \frac{1}{2}$, centre $(0,0)$ B1 for one side correct length Allow $1 / 2$ square tolerance for both vertices and lengths of sides of triangle	
					Total 3 marks

15 a	$2 \times(12 \times 7+7 \times 5+12 \times 5)$ or $2 \times(84+35+60)$		2	$M 1$	for correct substn or 179 seen
b	$12 L+16=70$ or $8 L+4 L=54$ or $12 L=54$	$6 L+8=35$ or $4 L+2 L=27$ or $6 L=27$		3	A1

16 a	$\frac{14}{100} \times 850$		2	M1	
		119		A1	cao
b	$\frac{266}{760}$ or 0.35		M1		
		35		A1	cao
c	$\frac{204}{0.3}$ or $\frac{204}{30}$ or 6.8 or $\frac{204}{3}$ or 68		2	M1	
		680		A1	cao

\(\left.\left.$$
\begin{array}{|l|l|l|l|}\hline 17 & \begin{array}{l}\text { Examples of complete, correct explanations } \\
\text { (i) } 10 \times 0.35 \text { or } 3.5 \text { seen (may be in } \frac{3.5}{10} \text {) AND } \\
\text { can't have half beads or there must be a whole } \\
\text { number of (red) beads } \\
\text { (ii) } 3 \frac{1}{2} \text { red beads is impossible } \\
\text { (iii) } \frac{7}{20} \text { AND there are (only) } 10 \text { beads } \\
\text { or you need } 20 \text { beads } \\
\text { (iv) } \begin{array}{l}\text { The probability of any bead/a red bead } \\
\text { must be tenths or must have } 1 \text { decimal place or } \\
\text { must have } 1 \text { significant figure }\end{array} \\
\text { (v) Gives at least two examples that the } \\
\text { probability of taking a red bead is } \frac{n}{10} \text { where } \\
2 \leq n \leq 9 \text { e.g. states } 0.3 \text { and } 0.4\end{array} & \begin{array}{l}\text { B2 }\end{array} & \begin{array}{l}\text { for a complete, correct explanation } \\
\text { B1 for a partially correct explanation } \\
\text { Examples of partially correct explanations }\end{array} \\
\text { (i) } \frac{1}{10} \text { or } 0.1 \text { seen } \\
\text { (ii) Gives one example that the probability of } \\
\text { taking a red bead is } \frac{n}{10} \text { where } 2 \leq n \leq 9\end{array}
$$\right\} \begin{array}{l}(iii) There would be 3.5 red beads.

(iv) 10 \times 0.35=3.5

(v) 0.35=\frac{7}{20}\end{array}\right\}\)| Treat statements like 'Don't know the number |
| :--- |
| of red beads' as irrelevant. |

18 a		$p(p+7)$	2	B2	Also accept $(p+0)(p+7)$ for B2 B1 for factors which, when expanded and simplified, give two terms, one of which is correct. SC B1 for $p(p+7 p)$
b	$5 x=2$ or $-5 x=-2$		3	M2	for $5 x=2$ or $-5 x=-2$ or $\frac{5 x}{5}=\frac{2}{5}$ M1 for $4=5 x+2$ or $5 x=4-2$ or $-5 x=2-4$ or $5 x-2=0$
		$\frac{2}{5} \text { or } 0.4$		A1	dep on at least M1
C		t^{9}	1	B1	cao
d	$12 y+15-10 y-15$		2	M1	for 3 correct terms inc correct signs or for $12 y+15-(10 y+15)$
		$2 y$		A1	Accept $2 y \pm 0$
					Total 8 marks

19	$10 \times 8+30 \times 24+50 \times 5+70 \times 2+90 \times 1$ or $80+720+250+140+90$ or 1280	4	$M 1$	for finding at least three products $f \times x$ consistently within intervals (inc end points) and summing them	
	$\frac{" 1280 "}{40}$			M1	(dep on 1st M1) for division by 40 or for division by their $8+24+5+2+1$
		32		A1	cao

20	$1 / 2 \times 10 \times 12$ or 60		3	$M 1$	for area of one triangle		
	$13 \times 15+13 \times 15+10 \times 15$ or $195+195+150$ or 540			$M 1$	for $13 \times 15+13 \times 15+10 \times 15$ oe		
		660			A1	cao	cao
:---							

21 a	13927	2	B2	-B1 for eeoo or any repetition
b	Yes and gives an explanation which either refers specifically to the members of A and their properties eg All the factors of 27 are odd. None of the factors of 27 are even. $2,4,6,8$ aren't factors of 27. or gives a general explanation which shows understanding of the statement eg A and C have no members in common. The intersection of A and C is empty.	1	B1	for 'Yes' and an acceptable explanation Do not accept an explanation which merely lists, without comment, the members of both sets. Do not accept an explanation which includes the symbol \cap with no indication of its meaning.
				Total

Q	Working	Answer	Mark	Notes		
1 ai		9981908199019982001	1	B1		
ii		2001	1	B1		
iii		1908	1	B1		
iv		1998-998	1	B1	B0 for 998-1998	
bi		3478	1	B1		
ii		8734	2	B2	B1 for 8374	
						Total 7 marks

2	ai	kite	1	B1
Allow mis-spellings (any recognisable attempt)				
ii	parallelogram	1	B1	Allow mis-spellings (any recognisable attempt)
iii	trapezium	1	B1	Allow mis-spellings (any recognisable attempt)
bi	acute	1	B1	Allow mis-spellings (any recognisable attempt)
ii	reflex	1	B1	Allow mis-spellings (any recognisable attempt)

| 3 | i | A at $0.5 \pm 2 \mathrm{~mm}$ | 1 | B1 | If no Xs, mark point on line level with middle of letter A, |
| :--- | :--- | :--- | ---: | :--- | :--- | :--- |
| | ii | B at $1 \pm 2 \mathrm{~mm}$ | 1 | B 1 | B or C |
| | Cii | $\mathrm{C}>0 \&<0.25$ | 1 | B 1 | If no letters then no marks |
| | | | | | |

4 a	$5 \times 4+12$	32	2	M1 A1	cao
b	$(47-12) \div 5$		7	2	M1 A1
	M1 for $47-12$ or 35 or $47 \div 5$ or 9.4 or $5 " n "+12=47$ cao				

5 a		$1,3,11,33$	2	B2	B2 fully correct (no additions or errors) B1 for any two correct factors 3 correct \& 1 wrong $=$ B1
b		46	1	B1	No embedded answers i.e. $46^{2}=2116$
c	243	1	B1		
d	26	1	B1	No embedded answers i.e. $26^{3}=17576$	

6	$\begin{aligned} & 7 \times 1.20+6 \times 0.75 \quad(=12.9) \\ & 20-" 12.9 " \end{aligned}$	7.1 (0)	3	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	condone omission of final zeros dep	
						Total 3 marks

7 a		6	1	B1		
b	Attempt to add all the numbers $\text { " } 88 " \div 8$	11	3	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$ A1	dep	If ans $=76.6(25) \mathrm{M} 2 \mathrm{AO}$
c		11	1	B1	ft (b)	
						Total 5 marks

8	a	$3+5+3+5$ oe		16	2

9 ai		${ }^{9} / 36$	1	B1	
ii		$4 / 20$	1	B1	
b	$\begin{aligned} & 2 / 3 \times 9 / 5 \\ & x / 9 \text { and } y / 9 \end{aligned}$	${ }^{18} / 15$ or $6 / 5$	3	M2	M1 for inverting $2^{\text {nd }}$ fraction i.e. ${ }^{9} / 5$ oe or M1 for 2 correct fractions with a common denominator of a multiple of 9
	$6 / 9 \div 5 / 9$			M2	M1 correct numerators and intention to divide
				A1	Any fraction equivalent to $11 / 5$ Do not allow decimal conversions
					Total 5 marks

10 a		12 $\mathrm{~cm}^{2} \mathrm{sq} \mathrm{cms}$	B2 B1	B1 for 11 to 13 or 3×4 ind	
b		Correct $\pm 2 \mathrm{~mm}$	2	B2	B1 for any 2 vertices correct $\pm 2 \mathrm{~mm}$ or correct size, shape \& orientation
					Total 5 marks

11	a	$(10+5) \times 4$	60	2	M1 A1
brackets necessary unless answer correct					
b	$28 \div 4-5$	2	2	M1 A1	allow $23 \div 4$ or 5.75 (i.e. reverse operations but wrong order
c	$-8 \div 4-5$ or $-2-5$	-7	2	M1 A1	allow $-13 \div 4$ or -3.25 (i.e. reverse operations but wrong order)
d		$(x+5) \times 4$ or $4 x+20$ oe	2	B2	B1 for $x+5 \times 4$ or $x+20$ or $4 x+5$ or " $y=$ " $4 x+5$ B0 for $x=4 x+5$

13 a	$\begin{aligned} & \begin{array}{l} 90 \div 40(=2.25) \end{array} \text { or } 12 \div 40(=0.3) \text { or } 40 \div 12(=31 / 3) \\ & \text { then } \\ & \text { " } 2.25 " \times 12 \text { or " } 0.3 " \times 90 \quad \text { or } 90 \div " 31 / 3 " \\ & \begin{array}{l} \text { (scale factors) } \\ \text { per student) } \end{array} \\ & \hline \end{aligned}$			27	3	M1 M1 A1	or M2 for $12 \times 90 \div 40$ then dep cao	$\begin{aligned} & 08) \\ & 3 " / 4 \end{aligned}$
b	${ }^{130} / 240 \times 360$			195°	2	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M1 for }{ }^{130} / 240 \\ & \text { cao } \end{aligned}$	
	Total 5 marks							

14 a		$x-5$	1	B1	Accept $\mathrm{y}=\mathrm{x}-5$ not $\mathrm{x}=\mathrm{x}-5$ or $0=x-5$
bi	$3(x-5)=39$ or $3 x-15=39$ or $x-5=13$			M2	M1 for $3 x-5=39$
ii	$3 x=54$ or $x-5=13$	18	4	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~A} 1 \mathrm{ft} \end{gathered}$	Allow full ft on $\mathrm{ax}+\mathrm{b}=\mathrm{c}$ from bi ans $\mathrm{a}>1 \mathrm{~b}, \mathrm{c} \neq 0$ 18 no wrong working = M1 A1
					Total 5 marks

| 15 | $6 \times(-9+1)$
 $=-48$ oe (-54+6) | | M1
 M1
 A1 | allow without brackets M1 for -8
 numerator correct (or 6/(-2) or (3/8) x-8)
 cao |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

16	$67 \div 2$ or $(67+1) \div 2$ oe			$M 1$	attempt to find middle of frequencies of people
			7	2	$A 1$

17 a	$2 \times \pi \times 40$ oe	251	2	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	awrt 251	
b	$\begin{aligned} & 8 \times 10 \text { or } 80 \\ & \left.\pi \times 3^{2} \text { (value rounding to } 28.3 \text { or } 28.2\right) \\ & " 8 \times 10 "-" \pi \times 3^{2} " \end{aligned}$	51.7	4	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	Rectangle area Circle area dep on both M1's awrt 51.7	
						Total 6 marks

18 a	$1-(0.3+0.1+0.4)$	0.2oe	2	$\begin{aligned} & \hline \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Look for answer in table Decimals, fractions, \% only	
b	$0.3+0.4$	0.7oe	2	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Decimals, fractions, \% only	
						Total 4 marks

19 a	$\begin{aligned} & 5.1^{2}+3.2^{2} \quad(=36.25) \\ & 5 " 36.25 \text { " } \end{aligned}$	6.02	3	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	M2 for $5.1 / \cos \left(\tan ^{-1-}(3.2 / 5.1)\right)$ or $3.2 / \sin \left(\tan ^{-1}(3.2 / 5.1)\right)$ awrt 6.02	
b	tan selected $(A B=) 6.5 \times \tan 32^{\circ}$	4.06	3	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \sin 32^{\circ}=A B / 6.5 / \cos 32 \\ & (A B=) \sin 32^{\circ} \times{ }^{6.5} / \cos 32 \\ & \text { awrt } 4.06 \end{aligned}$	
						Total 6 marks

20	$12-x=21$ or $12-21=x$ or $-x=21-12$ $[12-21=x]$ or $[-x=21-12]$ oe	-9	3	M2	$[-x / 3=7-12 / 3]$ or $\left[{ }^{12} / 3-7=x / 3\right]$ $M 1$ for $12-x=3 x 7$
Total 3 marks					

| 21 | A product of 3 or more factors of
 which 2 are from 2,2,3,11 | M1 | Product can be implied from a factor tree or repeated
 division
 These combinations can be implied from a factor tree or
 repeated division |
| :--- | :--- | :--- | :--- | :--- | :--- |
| cao | | | |

22	$\begin{aligned} & {[80 / 40] \text { or }\left[{ }^{84} / 42\right]} \\ & \sqrt{36} \text { or } 6 \end{aligned}$	12	3	B1 B1 B1	Dep on both previous b1's	(Accept 10 if ${ }^{80} / 40,6$ used)
						Total 3 m

Total $\mathbf{1 0 0}$ marks

Except for questions* where the mark scheme states otherwise, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method. [* Questions 5(b), 11(a), 13(a), 15(d), 20 and 21]

Trial and improvement methods for solving equations score no marks, even if they lead to a correct solution.

Q	Working	Answer	Mark	Notes		
1 a	$80 \times \frac{2}{5}, 2 \times \frac{80}{5}$		2	M1	Also award for $80: 32$ or $32: 80$	
		32		A1	cao	
b	$3+1$ or 4		2	M1	Also award for $60: 20$ or $20: 60$	
		20		A1	cao	
						Total 4 marks

2	40×13.25 or $\frac{40}{60} \times 795$ oe		3	M2	for 40×13.25 oe or $\frac{40}{60} \times 795$ oe
				$M 1$ for $\frac{40}{60} \times(13 \times 60+15)$ or for $40 \times$ time eg 40×13.15 or 526 seen or 40×795 or $40 \times 13 . \ldots$	
		530		A1 cao	

| 3 | vertices (10,10)(15,10)(15,20) |
| :--- | :--- | :--- | :--- | :--- |$\quad 3$| B3 |
| :--- |

\(\left.$$
\begin{array}{|l|l|l|l|}\hline 4 & \begin{array}{l}\text { Examples of complete, correct explanations } \\
\text { (i) } 10 \times 0.35 \text { or } 3.5 \text { seen (may be in } \frac{3.5}{10} \text {) AND } \\
\text { can't have half beads or there must be a whole } \\
\text { number of (red) beads } \\
\text { (ii) } 3 \frac{1}{2} \text { red beads is impossible } \\
\text { (iii) } \frac{7}{20} \text { AND there are (only) } 10 \text { beads } \\
\text { or you need } 20 \text { beads } \\
\text { (iv) The probability of any bead/a red bead } \\
\text { must be tenths or must have } 1 \text { decimal place } \\
\text { (v) Gives at least two examples that the } \\
\text { probability of taking a red bead is } \frac{n}{10} \text { where } \\
2 \leq n \leq 9 \text { e.g. states } 0.3 \text { and } 0.4\end{array} & 2 & \begin{array}{l}\text { B2 } \\
\text { for a complete, correct explanation } \\
\text { B1 for a partially correct explanation } \\
\text { Examples of partially correct explanations }\end{array}
$$

(i) \frac{1}{10} or 0.1 seen

(ii) Gives one example that the probability of

taking a red bead is \frac{n}{10} where 2 \leq n \leq 9

(iii) There would be 3.5 red beads.

(iv) You can't have half beads

(v) 10 \times 0.35=3.5

(vi) 0.35=\frac{7}{20}\end{array}\right\}\)| Treat statements like 'Don't know the number |
| :--- |
| of red beads' as irrelevant. |

5 a		$p(p+7)$	2	B2	Also accept $(p+0)(p+7)$ for B2 B1 for factors which, when expanded and simplified, give two terms, one of which is correct. SC B1 for $p(p+7 p)$
b	$5 x=2$ or $-5 x=-2$		3	M2	for $5 x=2$ or $-5 x=-2$ or $\frac{5 x}{5}=\frac{2}{5}$ M1 for $4=5 x+2$ or $5 x=4-2$ or $-5 x=2-4$ or $5 x-2=0$
		$\frac{2}{5} \text { or } 0.4$		A1	for 4 correct B1 for 2 correct
c		t^{9}	1	B1	cao
d	$12 y+15-10 y-15$		2	M1	for 3 correct terms inc correct signs or for $12 y+15-(10 y+15)$
		2y		A1	Accept $2 y+0$
					Total 8 marks

6 a	$\frac{266}{760}$ or 0.35		2	M 1	
		35		A 1	cao
b	$\frac{204}{0.3}$ or $\frac{204}{30}$ or 6.8 or $\frac{204}{3}$ or 68		2	M 1	
		680		A1	cao

7	\sin		3	M1	for sin	or M1 for cos and $\frac{\sqrt{449.45 "}}{7.9}$ following correct Pythagoras and A1 for 0.8901 ... or M1 for tan and $\frac{3.6}{\sqrt{" 49.45 "}}$ following correct Pythagoras and A 1 for 0.5119...
	$\frac{3.6}{7.9}$ or $0.4556 . .$.			A1	for $\frac{3.6}{7.9}$ oe or 0.4556...	
		27.1		A1	for answer rounding to 27.1	
						Total 3 marks

8 a	13927	2	B2	-B1 for eeoo or any repetition	
b	Yes and gives an explanation which either refers specifically to the members of A and their properties eg All the factors of 27 are odd. None of the factors of 27 are even. $2,4,6,8$ aren't factors of 27 . or gives a general explanation which shows understanding of the statement eg A and C have no members in common. The intersection of A and C is empty.	1	B1	for 'Yes' and an acceptable explanation Do not accept an explanation which merely lists, without comment, the members of both sets. Do not accept an explanation which includes the symbol \cap with no indication of its meaning.	
c		2	B2	$B 1$ for $B \subset A$ B1 for $A \cap C=\varnothing$ and $B \cap C=\varnothing$ Ignore any individual members shown on the diagram. Mark the layout which must be labelled	
					Total 5 marks

9	$4.7^{2}+5.9^{2}$ $=22.09+34.81=56.9$		4	M1	for squaring \& adding
	$\sqrt{4.7^{2}+5.9^{2}}$			M1	(dep) for square root
	$7.5432 \ldots$			A1	for value which rounds to 7.54
		2.84	A1	for answer which rounds to 2.84 $(2.84320 \ldots)$	
					Total 4 marks

10 a	$\begin{aligned} & 10 \times 8+30 \times 24+50 \times 5+70 \times 2+90 \times 1 \\ & \text { or } 80+720+250+140+90 \text { or } 1280 \end{aligned}$		4	M1	for finding at least three products $f \times x$ consistently within intervals (inc end points) and summing them	
			M1	(dep) for use of halfway values		
	$\frac{" 1280 "}{40}$				M1	(dep on 1st M1) for division by 40 or division by their $8+24+5+2+1$
		32		A1	cao	
b	$d=25$ indicated on graph		2	M1		
		12 or13		A1	Accept 12-13 inc	
C	10 and 30 or $10 \frac{1}{4}$ and $30 \frac{3}{4}$ indicated on cumulative frequency axis or stated		2	M1		
		14-17 inc		A1		

11 a	$\begin{aligned} & 10 x-15 y=45 \\ & 10 x+8 y=22 \end{aligned}$	$\begin{aligned} & 8 x-12 y=36 \\ & 15 x+12 y=33 \end{aligned}$		4	M1	for coefficients of x or y the same followed by correct operation or for correct rearrangement of one equation followed by substitution in the other eg $5 x+4\left(\frac{2 x-9}{3}\right)=11$ For both approaches, condone one arithmetical error
	$y=-1$	$x=3$			A1	cao dep on M1
					M1	(dep on 1st M1) for substituting for other variable
			$3-1$		A1	cao dep on all preceding marks
b			3, -1	1	B1	ft from (a)
						Total 5 marks

12 a		1.5×10^{8}	2	M 1	for 1.5×10^{m}
				A 1	if $\mathrm{m}=8$
b		7.2×10^{-1}	2	M 1	for 7.2×10^{n} or 0.72 oe with digits 72 eg 72×10^{-2}
				A 1	if $n=-1$
					Total 4 marks

13 a	$12 L+16=70$ or $8 L+4 L=54$ or $12 L=54$	$6 L+8=35$ or $4 L+2 L=27$ or $6 L=27$		3	$M 2$

13 b	$A=2 L W+2 W H+2 H L$ or $\frac{A}{2}=L W+W H+H L$	4	M1	for a correct equation following expansion or division by 2 May be implied by second $M 1$	
	$A-2 H L=2 L W+2 W H$ or $\frac{A}{2}-H L=L W+W H$		M1for correct equation with W terms isolated		
	$A-2 H L=2 W(L+H)$ or $A-2 H L=W(2 L+2 H)$ or $\frac{A}{2}-H L=W(L+H)$	M1	for correct equation with W as a factor		
				A1	

14 ai	47	2	B1	cao	
ii	alternate angles		B1	Award this mark if 'alternate' appears	
b	124	1	B1	cao	
ci	47	2	B1	cao	
ii	angle between a chord and a tangent = angle in the alternate segment		B1	Accept 'alternate segment'	
					Total 5 marks

16 a	$\pi \times 4^{2}+\pi \times 4 \times 9$		2	M1	
		163	A1	for ans rounding to 163 $(\pi \rightarrow 163.3628 . . .3 .14 \rightarrow 163.28$ $3.142 \rightarrow 163.384)$	
b	$\frac{6}{4}$ or 1.5 oe or $6: 4$ oe or $\frac{4}{6}$ oe or $4: 6$ oe		2	M1	May be implied by 13.5 or 12.09... Also award for cube of any correct values or cube of correct ratios
		3.375 oe		A1	for 3.375 or $3 \frac{3}{8}$ or $\frac{27}{8}$ oe Accept 3.38 if $M 1$ scored Do not award A1 if slant heights used as h in $v=\frac{1}{3} \pi r^{2} h$

17 i	$\frac{3}{5} \times \frac{2}{4}$		5	M1		Sample space method - award 2 marks for a correct answer, otherwise no marks	
		$\frac{6}{20}$ or $\frac{3}{10}$		A1			
ii	$\begin{aligned} & \frac{1}{5} \times \frac{1}{4} \times 2+" \frac{6}{20} " \\ & \text { or } \frac{2}{5} \times \frac{1}{4}+" \frac{6}{20} " \end{aligned}$			M1	for $\frac{1}{5} \times \frac{1}{4}$ or $\frac{2}{5} \times \frac{1}{4}$	Award MO MO AO for $\frac{1}{5}+\frac{1}{5}=\frac{2}{5}$ Sample space method - award 3 marks for a correct answer, otherwise no marks	
				M1	for complete sum		
		$\begin{aligned} & \frac{8}{20} \text { or } \\ & \frac{2}{5} \text { oe } \end{aligned}$		A1		SC	
						$M 1$ for $\frac{1}{5} \times \frac{1}{5}$ or $\frac{1}{25}$	
						M1 for $\frac{1}{5} \times \frac{1}{5} \times 2+\text { their }(i)$	Sample space method award 2 marks for $\frac{11}{25}$ otherwise no marks
							Total 5 marks

18	$(5 x-1)(x+3)$		4	B1	for factorising numerator	$x-1)(x+3)$
	$\begin{aligned} & 2\left(25 x^{2}-1\right) \\ & \frac{(5 x-1)(x+3)}{2(5 x+1)(5 x-1)} \end{aligned}$			B1 B1	for factorising denominator as $2\left(25 x^{2}-1\right)$ for factorising $25 x^{2}-1$ as $(5 x+1)(5 x-1)$	or B2 for factorising denominator as $(5 x-1)(10 x+2)$ or $(5 x+1)(10 x-2)$
$\frac{x+3}{2(5 x+1)} \text { or } \frac{x+3}{10 x+2}$				B1		
						Total 4 marks

19	$\begin{aligned} & 2 \times 6 \sin 39^{\circ} \\ & \text { or } 2 \times 6 \cos 51^{\circ} \\ & \text { or } 6^{2}+6^{2}-2 \times 6 \times 6 \cos 78^{\circ} \\ & \text { or } \frac{6 \sin 78^{\circ}}{\sin 51^{\circ}} \end{aligned}$		6	M1	
	7.551...			A1	for answer rounding to 7.55
	$\text { eg } \frac{78}{360} \times \pi \times 12$			M1	for $\frac{78}{360}$ oe inc $0.2166 \ldots$ rounded or truncated to at least 3 decimal places or for $\frac{360}{78}$ oe inc $4.6153 \ldots$ rounded or truncated to at least 3 decimal places
				M1	for $\pi \times 12$ or for $2 \pi \times 6$ $(\pi \rightarrow 37.699 \ldots 3.14 \rightarrow 37.68 \text { 3.142 } \rightarrow 37.704)$
	$8.16-8.17$ inc oe inc $\frac{13 \pi}{5}, 2.6 \pi$ oe			A1	for 8.17 or better $(\pi \rightarrow 8.168 \ldots$ $3.14 \rightarrow 8.164 \quad 3.142 \rightarrow 8.1692$)
		15.7		A1	for ans rounding to 15.7 ($\pi \rightarrow 15.7199$... $3.14 \rightarrow 15.7158 \ldots$ $3.142 \rightarrow 15.7202$...)
					Total 6 marks

20	225 seen		3	B1	
	$\sqrt{225}$ or 15			B1	Award B1 for 15 only if 225 seen
		60		B1	cao Award only if preceding 2 marks scored
					Total 3 marks

21	$\begin{aligned} & (x+4)^{2}=x^{2}+(x+6)^{2}-2 x(x+6) \cos 60^{\circ} \\ & \text { or } \cos 60^{\circ}=\frac{(x+6)^{2}+x^{2}-(x+4)^{2}}{2 x(x+6)} \end{aligned}$		5	M1		
	$\begin{aligned} & x^{2}+4 x+4 x+16 \text { or } x^{2}+8 x+16 \\ & \text { and } \\ & x^{2}+6 x+6 x+36 \text { or } x^{2}+12 x+36 \end{aligned}$			B1	dep on M1 for correct expansion of $(x+4)^{2}$ and $(x+6)^{2}$ in correct statement of Cosine Rule	Omitted brackets may be implied by correct subsequent working.
	$x^{2}+8 x+16=x^{2}+x^{2}+12 x+36-x^{2}-6 x$ or $x^{2}+6 x=x^{2}+12 x+36+x^{2}-x^{2}-8 x-16$ oe			B1	for correctly dealing with $\cos 60^{\circ}$ and obtaining a correct equation with no fractions and no brackets	
	$2 x=20$ oe			B1	for correct linear equation $-2 x=-20,4 x=40,2 x-20$	0
		10		A1	cao dep on all preceding m	
						Total 10 marks

Except for questions 9, 11, 21 (where the marking scheme states otherwise), unless clearly obtained by an incorrect method, a correct answer should be taken to imply a correct method.

Trial and improvement methods for solving equations score no marks, even if they lead to correct answers.

2 i	$3 x-15=39$ or $3(x-5)=39$ or $x-5=39 / 3$			B3	do not accept x-5 $=13$ B2 for $3 x-5=39$ if $x-5$ seen otherwise B1 B1 for $x-5$ seen $B 0$ for $x=39 / 3+5$ oe
ii	$3 x=54$ or $x-5=13$	18	5	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~A} 1 \end{gathered}$	ft from any linear equation $a x+b=c \quad a>1 b, c \neq 0$ $a x=c-b$ or $x=c / a-b / a$ 18 with no working for answer in i) or ii) gets MI A1
					Total 5 marks

3	$6 \times(-9+1)$ or -8 seen			M1	allow $6 \times-9+1$	
	-48 or $-54+6$			M1	Accept $6 /(-2)$ or $(3 / 8) \times-8$	Total 3 marks
		-3	3	A1		

4	$67 \div 2$ or $(67+1) \div 2$ oe			M1	attempt to find middle of cumulative frequency or listing of people. cao
		7	2	A1 look for mean (7.56..) rounded down (MO AO)	

5 a	$2 \times \pi \times 40$ oe	251	2	M1 A1	answer rounding to 251	
b	$\begin{aligned} & 8 \times 10 \text { or } 80 \\ & \pi \times 3^{2}(\text { awrt } 28.2 \text { or } 28.3) \\ & " 8 \times 10 "-" \pi \times 3^{2 "} \end{aligned}$	51.7	4	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	dep on both M1's answer rounding to 51.7	
						Total 6 marks

6	a	$1-(0.3+0.1+0.4)$	0.20 e	2	M1 A1	Look for answer in table if missing from answer line
b	$0.3+0.4$	0.70 e	2	M1 A1		

8 a	$\begin{aligned} & 5.1^{2}+3.2^{2} \quad(=36.25) \\ & 5 " 36.25 " \end{aligned}$	6.02	3	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	M2 for $5.1 / \cos \left(\tan ^{-1}(3.2 / 5.1)\right)$ or $3.2 / \sin \left(\tan ^{-1}(3.2 / 5.1)\right)$ answer rounding to 6.02 \quad Must be complete methods
b	tan selected $6.5 x \tan 32^{\circ}$	4.06	3	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	$\sin 32^{\circ}={ }^{" A B}{ }^{\prime \prime} /_{6.5 / \cos 32}$ or "AB"/sin32=6.5/sin 58 $(A B=) \sin 32^{\circ} \times 6.5 / \cos 32$ or $(A B=) \sin 32 \times 6.5 / \sin 58$ answer rounding to 4.06
					Total

10	A product of 3 or more factors of which 2 are from $2,2,3,11$ $1,2,2,3,11$ or $2,2,3,11$			M1 can be implied from a factor tree or repeated division
	$2 \times 2 \times 3 \times 11$	3	A1	product must be stated (not dots for product)
				M2 can be implied from a factor tree or repeated division
Total 3 marks				

11	$\begin{aligned} & {[80 / 40] \text { or }\left[{ }^{84} / 42\right]} \\ & 536 \text { or } 6 \end{aligned}$	12	3	B1 B1 B1	dep on both previous B1's (Accept 10 only if ${ }^{80} / 40,6$ used) (Answer only gains no marks)

12 a	v / h_{h} in a correct Δ	$1 / 2$ oe	2	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	M1 A0 for $1 / 2 x$
b		$y={ }^{1} / 2{ }^{\prime \prime} x+2$ oe	2	B2	B1 for " $1 / 2$ " $x+2$ or L= " $1 / 2$ " $x+2$
c		$y=" 1 / 2>x+c$	1	B1	c any number $\neq 2$ or letter or $y=" 0.5$ " x or a line parallel to their b)

13 a		60	1	B1	
b	$y / 7.5=4 / 5$ oe	6	2	M1 A1	correct ratios or correct use of sf (0.8 or 1.25 or 1.5 or $2 / 3$)
c	[${ }^{2} / 5=3 / 4$] oe or $\left[7 / 7.5={ }^{3} /{ }^{6}{ }_{6}{ }^{\prime}\right]$	3.75	2	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	allow ft on their " 6 " or correct use of sf (0.8 or 1.25 etc) cao

14 a		binary tree structure all probs \& labels correct	3	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	P(tail) on Ist throw	
b	"1/4" ${ }^{\text {x }}$ " $1 / 4 "$	1/16 or 0.0625	2	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	ft their 2 tail branches cao	
						Total 5 marks

16 a		$(2 x-3)(x+1)$	2	B2	B1 for one correct factor or $(2 x+3)(x-1)$ (integers only)
b		"1.5" and "-1"	1	B1	both req $^{\text {d }}$ ft (a) if 2 linear factors
Total 3 marks					

17 a		$2 x+3$	2	B2	B1 each term (accept 3x ${ }^{0}$)	
b		"-5"	1	B1	ft their $a x+b \quad(a, b \neq 0)$	
c	$\begin{aligned} & " 2 x+3 "=0 \\ & x=-3 / 2 \end{aligned}$	$(-3 / 2,-9 / 4)$ oe	3	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	only ft their ${ }^{\mathrm{dy}} / \mathrm{dx}$, if $a x+b \quad(a, b \neq 0)$ cao dependent on $2 \mathrm{x}+3=0$ cao Answer dependent on $2 x+3=0$ seen	
						Total 6 mark

18 a	-x oe		1	B1	can be unsimplified
b		$\mathbf{x}+\mathbf{y}$ oe	1	B1	can be unsimplified
c	Unsimplified expression in terms of x and \mathbf{y} for PA or AP (either correct or ft from b) $\text { e.g. }(\mathrm{AP}=) \text { " } \mathbf{x}+\mathbf{y "}+\mathbf{y}-1 / 2 \mathbf{x} \text { or }$ $(P A=) 1 / 2 x-y-" x-y "$	$-0.5 x-2 y$	3	B2 B1	B1 Correct vector statement with at least 3 terms including $A P$ or PA e.g.PA $=P C+C A$ or $A P=A C+C P$ can include x and/ory cao
	-0.5x-2y				Total 5 marks

19 a	${ }^{80} / 150 \times 15$ or 4×2 (small squares) den)	8	2	M1 A1	M1 for any fd value in correct position and no errors or 1 large square=2.5 leaves or 1 small square=1/10 (leaf) oe
b	$\begin{aligned} & \text { Freq } 4-5=12 \text { and }(\text { freq } 5-6=6 \\ & \text { or freq } 5-9=24) \\ & 1 / 2 \times(\text { freq } 4-5+\text { freq } 5-6) \\ & \text { or }(1 / 2 \times \text { freq } 4-5+1 / 8 \times \text { freq } \\ & 5-9) \end{aligned}$	9	3	M1 M1 A1	$\begin{aligned} & 12 \text { \& } 6 \text { seen or } 12 \text { \& } 24 \text { or } 60 \text { \& } 30 \text { (small squares) } \\ & \text { dep e.g. }(0.5 \times 12)+(0.5 \times 6) \text { or }(0.5 \times 12)+(1 / 8 \times 24) \text { or } 1 / 10 \times 90 \end{aligned}$
					Total 5 marks

20 ai	$B M=1$ or $C M=1$			B1	(can be marked on diagram) allow cosine rule method
ii	$\begin{aligned} & \left(A M^{2}=\right) 2^{2}-1^{2} \\ & 3) \\ & (A M=) \sqrt{\left(2^{2}-1^{2}\right)} \\ & \sqrt{3}) \end{aligned}$	$53 / 2$ or $53 / 4$	4	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	(dependent on 1 line of Pythagoras or sine rule)
b	$\begin{aligned} & (\sqrt{3} / 2)^{2}+(1 / 2)^{2} \\ & =3 / 4+1 / 4 \quad \text { oe } \end{aligned}$		2	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	$\left({ }^{\sqrt{3}} / 2\right)^{2}$ Must be seen allow $0.75+0.25$ if $M 1$ gained

21 a	$\begin{aligned} & \frac{-3 \pm \sqrt{3^{2}-4 \times 2 \times(-1)}}{2 \times 2} \\ & \frac{-3 \pm \sqrt{17}}{4} \end{aligned}$	0.281 and -1.78	3	M1 A1	allow one sign error both answers rounding to $0.281 \&-1.78$ (answer only gains no marks)
b	$\begin{aligned} & \frac{2(x+1)-x}{x(x+1)}=1 \\ & 2(x+1)-x=x(x+1) \\ & x^{2}-2=0 \text { oe } \end{aligned}$	$\pm \sqrt{2}$ or $\pm 1.41 \ldots$	4	M1 M1 M1 A1	$\frac{2(x+1)}{x}-1=x+1 \text { or } 2-\frac{x}{x+1}=x$ removal of denominator correct gathering of terms answer rounding to ± 1.41 (answer only gains no marks)
					Total 7 marks

22 a	$\begin{aligned} & x \times 10^{5}+0.1 y \times 10^{5}=z x \\ & 10^{5} \end{aligned}$	$x+0.1 y$ oe	2	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	M1 for 0.1 y or $\left(10^{\times} \times 10^{4}+\mathrm{y} \mathrm{x} \mathrm{104}=10 \mathrm{z} \times 10^{4}\right)$ or ($10 \mathrm{x}+\mathrm{y}=10 \mathrm{z}$)
bi		7.5	1	B1	
ii	$0.75 \times 10^{n-m}\left(=\mathrm{a} \times 10^{\mathrm{p}}\right)$	$n-m-1$	2	M1	0.75 and $\mathrm{n}-\mathrm{m}$ seen (even in part i))
					Total 5 marks

Further copies of this publication are available from
Edexcel UK Regional Offices at www.edexcel.org.uk/sfc/feschools/regional/ or International Regional Offices at www.edexcel-international.org/sfc/academic/regional/

For more information on Edexcel qualifications, please visit www.edexcel-international.org/quals Alternatively, you can contact Customer Services at www.edexcel.org.uk/ask or on + 441204770696

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

