Mark Scheme (Results) November 2007

IGCSE

IGCSE Mathematics (4400_4H)

4400 IGCSE Mathematics

November 2007
Paper 4H

Q	Working	Answer	Mark	Notes	
1.	$\frac{1.6}{2.5}$		2	M1	for 1.6 or 2.5 seen or for 2.430 ...
		0.64		A1	Accept $\frac{16}{25}$
					Total 2 marks

2.	(a)		$5(x-4)$	$\mathbf{1}$	B1	cao
	(b)		$y(y+6)$	$\mathbf{2}$	B2	B1 for factors, which, when expanded and simplified, give two terms, one of which is correct except $(y+6)(y-6)$ and similar SC B1 for $y(y+6 y)$

3.		$630 \times 1.45 \div 2.61$		$\mathbf{2}$	M1	for $\frac{630}{2.61}$ or 241.38 or better or 241.37 or 630×1.45 or 913.5 or $0.55 \ldots$ seen or 1.8 seen
				350		A1
			Accept 349.99 or 350			

4.		Reflection in $x=4$		$\mathbf{2}$	B1	for reflection, reflect
					B1	for $x=4$ stated or eg 'in dotted line'

5.		$72 \div 6$ or 12 seen		$\mathbf{2}$	M1	
			84		A1	cao

6.	(a)(i)	57	2	B1	cao	
	(ii)	alternate angles		B1		Do not accept Z angles or F angles
	(b)	corresponding angles and sum of angles on a straight line is 180° or allied or co-interior angles and (vertically) opposite angles or alternate angles and sum of angles on a straight line is 180°	2	B1	for one pair	
		71		B1	cao	
						Total

7.	(a)	$\frac{55}{150} \times 60$		3	B1 M1	for $\frac{55}{150}$ oe or $\frac{60}{150}$ oe seen for $\frac{55}{150} \times 60$
			22		A1	cao
	(b)	$\begin{aligned} & 68 \times 48+58 \times 35 \\ & =3264+2030 \end{aligned}$		3	M1	2 products $m \times f$ where m is within each interval and consistent (inc end points)
					M1	(dep) for use of halfway values
			5294		A1	Accept 5300 or 5290 if M1 + M1 scored
	(C)	eg no upper limit for extra large, no lower limit for small, don't know midpoints for XL, S		1	B1	
						Total 7 marks

8.	(a)		2	B2	B1 for either open circle at -2 or solid circle at 3
	(b)	-101023	2	B2	B1 for all correct + 1 wrong or for four correct and none wrong
					Total 4 marks

9.		arc centre B cutting AB and AC at (say) P and Q	$\mathbf{2}$	B1	
		arcs centre P and Q of equal radii which intersect at			
		R (say) and BR joined		B1	(dep) bisector within tolerance

10.	(a)	7		2	B2	B1 for 4 correct
	(b)		graph	2	B2	B1 for 5 points plotted correctly $\pm 1 / 2$ sq ft from (a) if at least B1 scored B1 for correct curve or, if there are 1 or 2 errors in (a) and no plotting errors, award for a curve passing through the 7 points from their table.
						Total 4 marks
11.		$420 \times \frac{100}{56}$		3	M1	for $420 \div 56$ or 7.5 seen
					M1	(dep) for $\times 100$
			750		A1	cao
						Total 3 marks

12.	$4.9^{2}+16.8^{2}$ or $24.01+282.24$ or 306.25		$\mathbf{3}$	M1	for squaring and adding	
	$\sqrt{4.9^{2}+16.8^{2}}$			M1	(dep) for square root	
			17.5		A1	cao

$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \text { 13. } & & \frac{20805}{1.14} \text { or } 20805 \times \frac{100}{114} & & \text { 3 } & \text { M2 } & \text { for } \frac{20805}{1.14} \text { or } 20805 \times \frac{100}{114} \\ \text { M1 for } \frac{20805}{114}, 114 \%=20805 \\ \text { or } 182.5 \text { seen }\end{array}\right]$

14.	(a)		$6 n^{2}$	$\mathbf{1}$	B1	cao
	(b)	$3 x^{3} y^{2}$	$\mathbf{2}$	B2	B1 for x^{3} or y^{2}	
	(c)		t^{12}	$\mathbf{1}$	B1	cao
	(d)		$\frac{\mathrm{p}^{6}}{8}$	$\mathbf{2}$	B2	B1 for $\frac{1}{8}$ oe or for p^{6}

15.	(a)	$6.8 \times \frac{15}{10}$		2	M1	
			10.2		A1	cao
	(b)	$12.3 \times \frac{10}{15}$		2	M1	
			8.2		A1	cao
	(c)	$\frac{15}{10}$ or 1.5 oe		2	M1	for $\frac{15}{10}$ or 1.5 oe or for $\left(\frac{10}{15}\right)^{2}$ or $\frac{4}{9}$ or $0 . \dot{4}$ oe or for correct expression which, if accurately evaluated, gives the correct answer or for the area of one of the triangles evaluated correctly Area $\triangle \mathrm{ABC}$ rounds to 62.3 (62.2700...) NOT 62.73 Area Δ CDE rounds to 27.7 (27.6755...) NOT 27.88 Note: the angles of the triangle are $42.5^{\circ}, 54.5^{\circ}$ and 83.1°.
			2.25 oe		A1	for 2.25 or $21 / 4$ or ${ }^{9} / 4$ or for answer rounding to 2.25 Even if M1 awarded, do not award A1 for a correct answer, if there are any errors in the working.
						Total 6 marks

16.	(a)(i)		15	$\mathbf{2}$	B1	cao
	(ii)		7 or 8		B1	
	(b)	26 or $261 / 2$		$\mathbf{2}$	M1	may be stated or indicated on graph
			$54-55$ inc		A1	

17.	(a)	$72=2^{3} \times 3^{2}$ and $90=2 \times 3^{2} \times 5$ or 2×3^{2} or $1,2,3,4,6,8,9,12,18,24,36,72$ and $1,2,3,5,6,9,10,15,18,30,45,90$		$\mathbf{M 1}$	Need not be products of powers; accept products or lists ie 2,2,2,3,3 and 2,3,3,5 Prime factors may be shown as factor trees	
			18		A1	cao
	(b)	$2^{3} \times 3^{2} \times 5$ or $72,144,216,288,360$ and $90,180,270,360$		$\mathbf{2}$	$M 1$	
			360		A1	cao

18.	(a)	$2 y=6-x$		3	M1	for $2 \mathrm{y}=6-\mathrm{x}$ or for stating coordinates of 2 points on line
		$y=3-\frac{x}{2} \text { or } y=\frac{6-x}{2}$			M1	for correct rearrangement of equation with y as subject or for attempt to find gradient of line joining two stated points
			-1/2		A1	for $-1 / 2$ oe dep only on first M1 SC if M0, award B1 for correct ft from incorrect rearrangement
	(b)		$\begin{array}{r} y=-1 / 2 x+5 \\ \text { oe } \end{array}$	1	B1	correct answer or ft from (a) Equivalent equations include $x+2 y=10$
						Total 4 marks

19.	(i)		8	$\mathbf{4}$	B1	cao
	(ii)		12		B1	cao
	(iii)		0		B1	cao
	(iv)		16		B1	cao

20.	(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-10 x+8$		4	B2	B1 for 2 correct terms	
		$3 \times 2^{2}-10 \times 2+8$			M1	(dep on at least B1) for substituting $x=2$	
			0		A1	cao	
	(b)		(could be) turning point, max or min, (is) stationary point tangent is parallel to the $\mathrm{x}=\mathrm{axis}$	1	B1		
							Total 5 marks

21.	(a)	bar height 21 little squares	$\mathbf{2}$	B1	Allow $\pm 1 / 2 \mathrm{sq}$	
			bar height 6 little squares		B1	Allow $\pm 1 / 2 \mathrm{sq}$
	(b)			$\mathbf{8}$	$\mathbf{1}$	B1
		cao				

22.	(a)(i)		38	$\mathbf{2}$	B1	cao
	(ii)		Angles in the same segment oe			B1
	(b)		Award if 'same segment' 'same arc' or 'same chord' stated or implied			
				$\mathbf{2}$	B2	B1 for $\angle A D C=90^{\circ}$ or $\angle C O D=76{ }^{\circ}$ stated or indicated on diagram

23.	(a)	$3(2 x-5)+2$ or $6 x-15+2$		2	M1	
			$6 x-13$		A1	
	(b)	eg $\times 3 \rightarrow+2$ $\div(3 \leftarrow-2$ x the subject of $y=3 x+2$ or $x=3 y+2$			M1	
			$\frac{x-2}{3}$ oe		A1	

24.	$\frac{3}{5} \times \frac{3}{4}+\frac{2}{5} \times \frac{2}{4}$		$\mathbf{3}$	M2	for sum of both products (M1 if one correct product seen)	
			$\frac{13}{20}$		A1	

25.	(a)	$3 x+x(4-x)=11$ or $4 x+x(3-x)=11$ or $(4-x)(3-x)=1$ or $12-(4-x)(3-x)=11$		2	M1		Award M1 A1 for $4 x+3 x-x^{2}=11$
		$3 x+4 x-x^{2}=11$ or $4 x+3 x-x^{2}=11$ or $12-4 x-3 x+x^{2}=1$ or $12-12+4 x+3 x-x^{2}=11$			A1		
	(b)	$\frac{7 \pm \sqrt{(-7)^{2}-4 \times 11}}{2}$		3	M1	for correct substitution Condone omission of brackets	
		$\frac{7 \pm \sqrt{5}}{2}$			M1	for correct simplification	
			4.62, 2.38		A1	for 3 sf or better (4.61803... , 2.38196...)	
	(c)(i)		2.38	2	B1	for 2.38 or better	
	(ii)		eg $x<3$		B1		
						Total 7 marks	

26.	(a)	$\frac{1}{3} \pi r^{2} \times r+\pi r^{2} \times r$ or $\frac{1}{3} \pi r^{3}+\pi r^{3}$		$\mathbf{2}$	M1	
			$\frac{4}{3} \pi r^{3}$		A1	dep on M1
	(b)	$\pi r l+2 \pi r^{2}+\pi r^{2}$ oe		$\mathbf{3}$	M1	
		$1>$ r or $l=r \sqrt{2}$ oe			M1	
			$>4 \pi r^{2}$		A1	
						Total 5 marks

