Centre No.					
Candidate No.					

Surname

Signature

Paper Reference(s)

4400/4H

London Examinations IGCSE

 Mathematics

Team Leader's use only

Paper 4H

Higher Tier

Thursday 4 November 2004 - Morning

Time: 2 hours

Materials required for examination Ruler graduated in centimetres and
 Items included with question papers millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions to Candidates

In the boxes above, write your centre number and candidate number, your surname, initial(s) and signature.
The paper reference is shown at the top of this page. Check that you have the correct question paper.
Answer ALL the questions in the spaces provided in this question paper.
Show all the steps in any calculations.

Information for Candidates

There are 24 pages in this question paper. All blank pages are indicated.
The total mark for this paper is 100 . The marks for parts of questions are shown in round brackets:
e.g. (2).

You may use a calculator.
Advice to Candidates
Write your answers neatly and in good English.

[^0]| Page Number | Leave Blank |
| :---: | :---: |
| 3 | |
| 4 | |
| 5 | |
| 6 | |
| 7 | |
| 8 | |
| 9 | |
| 10 | |
| 11 | |
| 12 | |
| 13 | |
| 14 | |
| 15 | |
| 16 | |
| 17 | |
| 18 | |
| 19 | |
| 20 | |
| 21 | |
| 22 | |
| 23 | |
| Total | |

IGCSE MATHEMATICS 4400
FORMULA SHEET - HIGHER TIER

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

$\operatorname{adj}=$ hyp $\times \cos \theta$
opp $=\operatorname{hyp} \times \sin \theta$
opp $=\operatorname{adj} \times \tan \theta$
or $\sin \theta=\frac{\text { opp }}{\text { hyp }}$
$\cos \theta=\frac{\text { adj }}{\text { hyp }}$
$\tan \theta=\frac{\text { opp }}{\text { adj }}$
In any triangle $A B C$

Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

Volume of prism $=$ area of cross section \times length

Circumference of circle $=2 \pi r$
Area of circle $=\pi r^{2}$
Area of a trapezium $=\frac{1}{2}(a+b) h$

The Quadratic Equation
The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$, are given by
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Answer ALL TWENTY THREE questions.

Write your answers in the spaces provided.
You must write down all stages in your working.

1. The total weight of 3 identical video tapes is 525 g .

Work out the total weight of 5 of these video tapes.
2. Solve $5 x-3=2 x-1$
$x=$
3.

The shape $A B C D E$ is the plan of a field.
$A B=150 \mathrm{~m}, B C=90 \mathrm{~m}, C D=70 \mathrm{~m}$ and $E A=110 \mathrm{~m}$.
The corners at A, B and C are right angles.
Work out the area of the field.
4. Here is a 4-sided spinner.

The sides of the spinner are labelled $1,2,3$ and 4.
The spinner is biased.
The probability that the spinner will land on each of the numbers 1,2 and 3 is given in the table.

Number	1	2	3	4
Probability	0.2	0.1	0.4	

(a) Work out the probability that the spinner will land on 4

Tom spun the spinner a number of times.
The number of times it landed on 1 was 85
(b) Work out an estimate for the number of times the spinner landed on 3
5. Calculate the value of $\sqrt{2.6^{3}-3.9^{2}}$

Write down all the figures on your calculator display.
6. (a) Expand $y(y+2)$
(b) Expand and simplify $3(2 x+1)+2(x-4)$
(2)
7. Paul got 68 out of 80 in a science test.
(a) Work out 68 out of 80 as a percentage.

Paul got 72 marks in a maths test.
72 is 60% of the total number of marks.
(b) Work out the total number of marks.
8. The nth term of a sequence is given by this formula.

$$
n \text {th term }=20-3 n
$$

(a) Work out the 8th term of the sequence.
\qquad
(b) Find the value of n for which $20-3 n=-22$

$$
n=
$$

\qquad

Here are the first five terms of a different sequence.

$$
\begin{array}{lllll}
8 & 11 & 14 & 17 & 20
\end{array}
$$

(c) Find an expression, in terms of n, for the nth term of this sequence.

$$
n \text {th term }=
$$

\qquad
9.

The diagram shows a prism.
The cross-section of the prism is a right-angled triangle.
The lengths of the sides of the triangle are $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm .
The length of the prism is 7 cm .
(a) Work out the volume of the prism.
(b) Work out the total surface area of the prism.
\qquad
(3)
10. The table gives information about the speeds, in km / h, of 200 cars passing a speed checkpoint.

Speed $(v \mathrm{~km} / \mathrm{h})$	Frequency
$30<v \leq 40$	20
$40<v \leq 50$	76
$50<v \leq 60$	68
$60<v \leq 70$	28
$70<v \leq 80$	8

(a) Write down the modal class.
\qquad
(b) Work out an estimate for the probability that the next car passing the speed checkpoint will have a speed of more than $60 \mathrm{~km} / \mathrm{h}$.
(c) Complete the cumulative frequency table.

Speed $(v \mathrm{~km} / \mathrm{h})$	Cumulative frequency
$30<v \leq 40$	
$30<v \leq 50$	
$30<v \leq 60$	
$30<v \leq 70$	
$30<v \leq 80$	

(d) On the grid, draw a cumulative frequency graph for your table.

(2)
(e) Use your graph to find an estimate for the inter-quartile range of the speeds.

Show your method clearly.
\qquad
(2)
(Total 8 marks)
11. (a) Simplify, leaving your answer in index form
(i) $2^{4} \times 2^{3}$
(ii) $3^{8} \div 3^{2}$
\qquad
(b) $5^{x}=1$

Find the value of x.
$x=$
(1) Q11
12. Solve the simultaneous equations

$$
\begin{aligned}
& 6 x-5 y=13 \\
& 4 x-3 y=8
\end{aligned}
$$

$$
x=
$$

\qquad
13.

$B E$ is parallel to $C D$.
$A B=4.5 \mathrm{~cm}, A E=5 \mathrm{~cm}, E D=3 \mathrm{~cm}, C D=5.6 \mathrm{~cm}$.
(a) Calculate the length of $B E$.
14. (a) Find the Highest Common Factor of 75 and 105.
(b) Find the Lowest Common Multiple of 75 and 105.
(2)
15. Make v the subject of the formula $m(v-u)=I$
\qquad
16. Kate is going to mark some examination papers.

When she marks for n hours each day, she takes d days to mark the papers.
d is inversely proportional to n.
When $n=9, d=15$
(a) Find a formula for d in terms of n.

$$
d=
$$

\qquad
(b) Kate marks for $7 \frac{1}{2}$ hours each day.

Calculate the number of days she takes to mark the papers.
17. The unfinished histogram and table give information about the times, in hours, taken by runners to complete the Mathstown Marathon.

Time $(t$ hours $)$	Frequency
$2 \leq t<3$	
$3 \leq t<3.5$	1200
$3.5 \leq t<4$	
$4 \leq t<4.5$	800
$4.5 \leq t<6$	1440

(a) Use the histogram to complete the table.
(b) Use the table to complete the histogram.
18.

Diagram NOT accurately drawn

Angle $P Q S=90^{\circ}$.
Angle $R Q S=90^{\circ}$.
$P S=5.3 \mathrm{~cm}, P Q=3.8 \mathrm{~cm}, Q R=6.2 \mathrm{~cm}$.
Calculate the length of $R S$.
Give your answer correct to 3 significant figures.
19. (a) Complete the table of values for $y=x+\frac{2}{x}$

x	0.2	0.4	0.6	0.8	1	1.5	2	3	4	5
y	10.2		3.9		3	2.8		3.7		5.2

(b) On the grid, draw the graph of $y=x+\frac{2}{x}$ for $0.2 \leq x \leq 5$

(c) Use your graph to find estimates for the solutions of the equation

$$
x+\frac{2}{x}=4
$$

$$
x=.
$$

\qquad or $x=$ \qquad

The solutions of the equation $2 x+\frac{2}{x}=7$ are the x-coordinates of the points of intersection of the graph of $y=x+\frac{2}{x}$ and a straight line \mathbf{L}.
(d) Find the equation of \mathbf{L}.
20.

Diagram NOT accurately drawn
$A B C$ is an equilateral triangle of side 8 cm .
With the vertices A, B and C as centres, arcs of radius 4 cm are drawn to cut the sides of the triangle at P, Q and R.
The shape formed by the arcs is shaded.
(a) Calculate the perimeter of the shaded shape.

Give your answer correct to 1 decimal place.
(b) Calculate the area of the shaded shape.

Give your answer correct to 1 decimal place.
\qquad
cm^{2}
(4)
21. Correct to 1 significant figure, $x=7$ and $y=9$
(a) Calculate the lower bound for the value of $x y$
(b) Calculate the upper bound for the value of $\frac{x}{y}$
22.

$$
\begin{aligned}
& \mathrm{f}(x)=x^{2} \\
& \mathrm{~g}(x)=x-6
\end{aligned}
$$

Solve the equation $\mathrm{fg}(x)=\mathrm{g}^{-1}(x)$
23. There are 10 beads in a box.
n of the beads are red.
Meg takes one bead at random from the box and does not replace it.
She takes a second bead at random from the box.
The probability that she takes 2 red beads is $\frac{1}{3}$.
Show that $n^{2}-n-30=0$

END

BLANK PAGE

[^0]: This publication may only be reproduced in accordance with
 London Qualifications Limited copyright policy
 © 2004 London Qualifications Limited.

