| Centre <br> No. |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Candidate No. |  |  |  |  |  |

Surname


## London Examinations IGCSE Mathematics

Team Leader's use only

Paper 3H

## Higher Tier

Monday 10 May 2004 - Morning
Time: 2 hours

## Materials required for examination <br> Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Items included with question papers Nil

| Page <br> Numbers | Leave <br> Blank |
| :---: | :---: |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |
| 9 |  |
| 10 |  |
| 11 |  |
| 12 |  |
| 13 |  |
| 14 |  |
| 15 |  |
| 17 |  |
| Total |  |
| 16 |  |
| 13 |  |

## Instructions to Candidates

In the boxes above, write your centre number and candidate number, your surname, initial(s) and signature.
The paper reference is shown at the top of this page. Check that you have the correct question paper. Answer ALL the questions in the spaces provided in this question paper.
Show all the steps in any calculations.

## Information for Candidates

There are 20 pages in this question paper. All blank pages are indicated.
The total mark for this paper is 100 . The marks for parts of questions are shown in round brackets:
e.g. (2).

You may use a calculator.

## Advice to Candidates

Write your answers neatly and in good English.

## IGCSE MATHEMATICS 4400

## FORMULA SHEET - HIGHER TIER



Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$


Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$


adj $=$ hyp $\times \cos \theta$
opp $=$ hyp $\times \sin \theta$
opp $=\operatorname{adj} \times \tan \theta$
or $\sin \theta=\frac{\text { opp }}{\text { hyp }}$
$\cos \theta=\frac{\text { adj }}{\text { hyp }}$
In any triangle $A B C$


Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$


Area of triangle $=\frac{1}{2} a b \sin C$

Volume of prism $=$ area of cross section $\times$ length


Area of a trapezium $=\frac{1}{2}(a+b) h$


The Quadratic Equation
The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$, are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

## Answer ALL TWENTY questions. <br> Write your answers in the spaces provided. <br> You must write down all stages in your working.

Leave

1. In July 2002, the population of Egypt was 69 million. By July 2003, the population of Egypt had increased by $2 \%$.

Work out the population of Egypt in July 2003.
$\qquad$ million
2. (a) Expand 3(2t+1)
(b) Expand and simplify $(x+5)(x-3)$
(c) Factorise $10 p-15 q$
(d) Factorise $n^{2}+4 n$
3.


A circle has a radius of 4.7 cm .
(a) Work out the area of the circle.

Give your answer correct to 3 significant figures.

The diagram shows a shape.
(b) Work out the area of the shape.


| Niat | Leave <br> blank |
| :--- | :--- |

Diagram NOT
accurately drawn

Diagram NOT
accurately drawn
$\qquad$
$\qquad$ $\mathrm{cm}^{2}$
(4)
4. The diagram shows a pointer which spins about the centre of a fixed disc.


When the pointer is spun, it stops on one of the numbers $1,2,3$ or 4 .
The probability that it will stop on one of the numbers 1 to 3 is given in the table.

| Number | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: |
| Probability | 0.35 | 0.16 | 0.27 |  |

Magda is going to spin the pointer once.
(a) Work out the probability that the pointer will stop on 4.
(b) Work out the probability that the pointer will stop on 1 or 3 .

Omar is going to spin the pointer 75 times.
(c) Work out an estimate for the number of times the pointer will stop on 2 .
5. (a) Express 200 as the product of its prime factors.

Leave
(b) Work out the Lowest Common Multiple of 75 and 200.
(2)
6. Two points, $A$ and $B$, are plotted on a centimetre grid.
$A$ has coordinates $(2,1)$ and $B$ has coordinates $(8,5)$.
(a) Work out the coordinates of the midpoint of the line joining $A$ and $B$.
$\qquad$
(2)
(b) Use Pythagoras' Theorem to work out the length of $A B$. Give your answer correct to 3 significant figures.
. cm
(4)
7. $A=\{1,2,3,4\}$

Leave
$B=\{1,3,5\}$
(a) List the members of the set
(i) $A \cap B$,
(ii) $A \cup B$.
(b) Explain clearly the meaning of $3 \in A$.
$\qquad$
8. (i) Solve the inequality $3 x+7>1$
(ii) On the number line, represent the solution to part (i).

9. The grouped frequency table gives information about the distance each of 150 people travel to work.

| Distance travelled <br> $(d \mathrm{~km})$ | Frequency |
| :---: | :---: |
| $0<d \leq 5$ | 34 |
| $5<d \leq 10$ | 48 |
| $10<d \leq 15$ | 26 |
| $15<d \leq 20$ | 18 |
| $20<d \leq 25$ | 16 |
| $25<d \leq 30$ | 8 |

(a) Work out what percentage of the 150 people travel more than 20 km to work.
$\qquad$
(b) Work out an estimate for the mean distance travelled to work by the people.
(c) Complete the cumulative frequency table.

| Distance travelled <br> $(d \mathrm{~km})$ | Cumulative <br> frequency |
| :---: | :---: |
| $0<d \leq 5$ |  |
| $0<d \leq 10$ |  |
| $0<d \leq 15$ |  |
| $0<d \leq 20$ |  |
| $0<d \leq 25$ |  |
| $0<d \leq 30$ |  |


(d) On the grid, draw a cumulative frequency graph for your table.
(e) Use your graph to find an estimate for the median of the distance travelled to work by the people.
Show your method clearly.
$\qquad$
10.


Diagram NOT accurately drawn

The diagram shows a shape.
$A B$ is an arc of a circle, centre $O$.
Angle $A O B=90^{\circ}$.
$O A=O B=6 \mathrm{~cm}$.
Calculate the perimeter of the shape.
Give your answer correct to 3 significant figures.
cm
11. The distance between the Earth and the Sun is 150000000 km .
(a) Write the number 150000000 in standard form.

The distance between Neptune and the Sun is 30 times greater than the distance between the Earth and the Sun.
(b) Calculate the distance between Neptune and the Sun.

Give your answer in standard form.
12. (a) Find the gradient of the line with equation $3 x-4 y=15$

Leave
blank
(b) Work out the coordinates of the point of intersection of the line with equation $3 x-4 y=15$ and the line with equation $5 x+6 y=6$
13. A body is moving in a straight line which passes through a fixed point $O$.

The displacement, $s$ metres, of the body from $O$ at time $t$ seconds is given by

$$
s=t^{3}+4 t^{2}-5 t
$$

(a) Find an expression for the velocity, $v \mathrm{~m} / \mathrm{s}$, at time $t$ seconds.

$$
v=
$$

$\qquad$
(b) Find the acceleration after 2 seconds.
14. The unfinished table and histogram show information from a survey of women about the number of calories in the food they eat in one day.

Leave blank

| Number of calories <br> $(n)$ | Frequency |
| :---: | :---: |
| $0<n \leq 1000$ | 90 |
| $1000<n \leq 2000$ |  |
| $2000<n \leq 2500$ | 140 |
| $2500<n \leq 4000$ |  |


(a) (i) Use the information in the table to complete the histogram.
(ii) Use the information in the histogram to complete the table.
(b) Find an estimate for the upper quartile of the number of calories.

You must make your method clear.
(2)
15. The length of a side of a square is 6.81 cm , correct to 3 significant figures.

Leave
(a) Work out the lower bound for the perimeter of the square.
(b) Give the perimeter of the square to an appropriate degree of accuracy. You must show working to explain how you obtained your answer.
cm
(2)
16. Express the algebraic fraction $\frac{2 x^{2}-3 x-20}{x^{2}-16}$ as simply as possible.
17. An electrician has wires of the same length made from the same material.

The electrical resistance, $R$ ohms, of a wire is inversely proportional to the square of its
Leave blank radius, $r \mathrm{~mm}$.
When $r=2, R=0.9$
(a) (i) Express $R$ in terms of $r$.

$$
R=
$$

(ii) On the axes, sketch the graph of $R$ against $r$.


One of the electrician's wires has a radius of 3 mm .
(b) Calculate the electrical resistance of this wire.
$\qquad$ ohms
(1)
18.

$A, B, C$ and $D$ are four points on the circumference of a circle. The chords $A C$ and $B D$ intersect at $E$.
$A E=3.6 \mathrm{~cm}, C E=2.8 \mathrm{~cm}, D E=2.4 \mathrm{~cm}$ and $A D=4.9 \mathrm{~cm}$.
(a) Calculate the length of $B E$.
(b) Calculate the size of angle $A E D$.

Give your answer correct to 3 significant figures.

0
(3)
19.

$$
\begin{aligned}
& \mathrm{f}: x \mapsto 2 x-1 \\
& \mathrm{~g}: x \mapsto \frac{3}{x}, x \neq 0
\end{aligned}
$$

(a) Find the value of
(i) $f(3)$,
(ii) $\operatorname{fg}(6)$.
(b) Express the inverse function $\mathrm{f}^{-1}$ in the form $\mathrm{f}^{-1}: x \mapsto \ldots$
(c) (i) Express the composite function gf in the form $\mathrm{gf}: x \mapsto \ldots$
(ii) Which value of $x$ must be excluded from the domain of gf?

$$
x=
$$

$\qquad$
(2)
20.


Diagram NOT accurately drawn
$Q, R, S$ and $T$ are points on the circumference of a circle.
$P U$ is a tangent to the circle at $T$.
$P Q R$ is a straight line.
Angle $P Q T=108^{\circ}$.
Angle $S T R=44^{\circ}$.
Work out the size of angle $S T U$.
You must give a reason for each step in your working.


BLANK PAGE

Edexcel International<br>London Examinations<br>IGCSE

IGCSE Mathematics (4400)
Mark Schemes for May 2004 examination session
Paper 3H (Higher Tier)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline No \& Working \& Answer \& Mark \& \multicolumn{3}{|c|}{Notes} <br>
\hline 1 \& $$
\begin{aligned}
& \frac{2}{100} \times 69 \text { or } 1.38 \\
& 69+" 1.38 "
\end{aligned}
$$ \& 70.38 \& 3 \& M

M

A \& | dep on $1^{\text {st }} \mathrm{M} 1$ |
| :--- |
| Accept 70.4 |
| Condone 7038 | \& or M2 for

$$
69 \times 1.02
$$

$$
000,70400000
$$ <br>

\hline | 2 |
| :--- |
| a |
| b |
| c |
| d | \& $x^{2}-3 x+5 x-15$ \& \[

$$
\begin{aligned}
& 6 t+3 \\
& \\
& x^{2}+2 x-15 \\
& 5(2 p-3 q) \\
& n(n+4)
\end{aligned}
$$

\] \& | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |
| :--- |
| 1 |
| 1 | \& B1

M

A
B1

B1 \& | cao |
| :--- |
| for 4 terms igno with correct sig | \& ing signs or 3 terms <br>

\hline | $3 \quad a$ |
| :--- |
| b | \& | $\pi \times 4.7^{2}$ |
| :--- |
| Splits shape appropriately eg triangle \& 2 rectangles, rectangle \& trapezium eg $7 \times 2+6 \times 4$ or $14+24$ $\frac{1}{2} \times 3 \times 4$ or 6 | \& | 69.4 |
| :--- |
| 44 | \& 2

4 \& M
A1
M

$M$
$M$

A \& \begin{tabular}{l}
for 69.4 or better <br>
for area of at le for area of trian cao

 \& 

(69.39778...) <br>
t one rectangle le or trapezium
\end{tabular} <br>

\hline | $4 \quad \text { ai }$ |
| :--- |
| ii |
| b | \& \[

$$
\begin{aligned}
& 1-(0.35+0.16+0.27) \\
& 0.35+0.27 \\
& 0.16 \times 75
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.22 \\
& 0.62 \\
& 12
\end{aligned}
$$
\] \& 4

2 \& M \&  \& <br>
\hline
\end{tabular}

| No | Working | Answer | Mark | Notes |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $5$ $\mathrm{a}$ <br> b | prime factors $2 \& 5$ seen $2 \times 2 \times 2 \times 3 \times 5 \times 5$ | $\begin{aligned} & 2 \times 2 \times 2 \times 5 \times 5 \\ & \text { or } 2^{3} \times 5^{2} \end{aligned}$ $600$ | 2 2 | M <br> A1 <br> M1 <br> A1 | for $2 \times 2 \times 2 \times 3 \times 5 \times 5$ or with at least 3 correct in e cao | lists of multiples list |
| 6 a <br> b  | $\begin{aligned} & 8-2=6 \& 5-1=4 \\ & 6^{2}+4^{2} \text { or } 36+16 \text { or } 52 \\ & \sqrt{6^{2}+4^{2}} \text { or } \sqrt{52}(7.2110 \ldots) \end{aligned}$ | $(5,3)$ $7.21$ | $\begin{aligned} & 2 \\ & 4 \end{aligned}$ | B2 <br> B1 <br> M1 <br> M1 <br> A1 | B1 for each coordinate <br> for squaring \& adding (dep on 1st M1) for square root for 7.21 or better | Either 6 or 4 must be correct for award of M marks |
| 7 i <br>  ii <br>  iii |  | $\begin{aligned} & 1,3 \\ & 1,2,3,4,5 \end{aligned}$ <br> "is a member of" oe | 3 | B1 <br> B1 <br> B1 | Condone repetition Condone repetition |  |
| $8$ $\mathrm{i}$ <br> ii | $3 x>-6$ | $x>-2$ <br> line to right of -2 indicated open circle at -2 | 4 | M1 A1 B1 B1 | SC if M0, award B1 for -2 ft from (i) line must either ft from (i) | e arrow or reach 4 |



\begin{tabular}{|c|c|c|c|c|}
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \[
\begin{array}{ll}
\hline 11 \& \mathrm{a} \\
\mathrm{~b}
\end{array}
\] \& \& \[
\begin{aligned}
\& 1.5 \times 10^{8} \\
\& 4.5 \times 10^{9}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& 2
\end{aligned}
\] \& \begin{tabular}{ll} 
B1 \& cao \\
M1 \& \(4.5 \times 10^{n}\) for integer \(n>0\) \\
A1 \& for \(n=9\) \\
\& SC B1 for \(4.5^{09}\)
\end{tabular} \\
\hline \begin{tabular}{l}
\[
12 \quad \mathrm{a}
\] \\
b
\end{tabular} \& \[
\begin{aligned}
\& 4 y=3 x-15 \\
\& y=\frac{3}{4} x-\frac{15}{4} \\
\& \\
\& \text { Eqn }(A) \times 3 \text { or } \operatorname{Eqn}(B) \times 2 \\
\& \text { eg } \begin{array}{l}
\text { or } \operatorname{Eqn}(A) \times 5 \text { or Eqn }(B) \times 3 \\
\operatorname{Eqn}(A) \times 3+\operatorname{Eqn}(B) \times 2 \\
\text { eg or Eqn(A) } \times 5-\operatorname{Eqn}(B) \times 3 \\
\text { eg } x=3
\end{array}
\end{aligned}
\] \& \(\frac{3}{4}\)
\[
\left(3,-1 \frac{1}{2}\right)
\] \& 3

4 \& | M1 |
| :--- |
| M1 for $\frac{" 3 x-15 "}{4}$ |
| A1 ft from $\frac{" 3 x-15 "}{4}$ |
| M1 for clear attempt at first step in correct process to eliminate either or $y$ |
| M1 Completes correct process to eliminate either $x$ or $y$ (Condone one error) |
| A1 cao for non-eliminated one |
| A1 cao | <br>

\hline $$
\begin{array}{cc}
13 & \begin{array}{l}
\mathrm{a} \\
\mathrm{~b}
\end{array}
\end{array}
$$ \& $6 t+8$ \& \[

3 t^{2}+8 t-5
\]

$$
20
$$ \& \[

$$
\begin{aligned}
& 2 \\
& 2
\end{aligned}
$$

\] \& | B2 (B1 for 2 terms correct) |
| :--- |
| M1 for $6 t+8$ or $\mathrm{d}(\mathrm{a}) / \mathrm{dt}$ if at least B1 scored |
| A1 ft | <br>


\hline | 14 | ai |
| :--- | :--- |
|  | ii |
|  | b | \& $\Sigma \mathrm{f}=480, \quad \frac{3}{4} \times 480=360$ \& bar correct

$$
130,120
$$

$$
2500
$$ \& 3

2 \& | B1 | $28 \pm 1 / 2$ sq |
| :--- | :--- |
| B2 | B1 cao for each value |
| M1 |  |
| A1 | ft from " 480 " ie $\Sigma \mathrm{f}$ | <br>

\hline
\end{tabular}



| No | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| $18 \quad \mathrm{a}$ <br> b | $\begin{aligned} & 3.6 \times 2.8=2.4 \times B E \\ & \frac{3.6 \times 2.8}{2.4} \end{aligned}$ $\begin{aligned} & \frac{3.6^{2}+2.4^{2}-4.9^{2}}{2 \times 3.6 \times 2.4} \\ & -0.3061 \end{aligned}$ | 4.2 $108$ | 3 3 | M1 Accept $A E \times C E=B E \times E D$ <br> M1  <br>   <br> A1 cao  <br> M1  <br>   <br> A1 at least 3 sf  <br> A1 for 108 or better $(107.826 \ldots)$ |
| 19 <br> ai <br> ii <br> b <br> ci <br> ii | $\begin{aligned} & \text { eg } \begin{aligned} \times 2 \rightarrow-1 \end{aligned} \text { or attempt to make } x \text { the } \\ & \div 3 \leftarrow+1 \end{aligned} \text { subject of } y=2 x-1 \text {. }$ | $5$ $0$ $\begin{aligned} & \frac{x+1}{2} \mathrm{oe} \\ & \frac{3}{2 x-1} \\ & \frac{1}{2} \end{aligned}$ | 2 <br> 2 <br> 2 | B1 cao <br> B1 cao <br> M1 <br> A1 <br> B1 <br> B1 |



