

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

	CANDIDATE NAME		
	CENTRE NUMBER		CANDIDATE NUMBER
ω		NTERNATIONAL MATHEMATICS	0607/52
н		NIERNATIONAL MATHEMATICS	0607/52
ω	Paper 5 (Core)		October/November 2018
			1 hour
и и	Candidates ans	swer on the Question Paper.	
* ω μ ω 6 ω μ ω μ ω θ ω θ ω θ ω θ ω θ ω θ ω θ ω θ ω θ ω θ	Additional Mate	rials: Graphics Calculator	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

Do not use staples, paper clips, glue or correction fluid.

You may use an HB pencil for any diagrams or graphs.

DO **NOT** WRITE IN ANY BARCODES.

Answer **all** the questions.

You must show all relevant working to gain full marks for correct methods, including sketches.

In this paper you will also be assessed on your ability to provide full reasons and to communicate your mathematics clearly and precisely.

At the end of the examination, fasten all your work securely together. The total number of marks for this paper is 24.

This document consists of 7 printed pages and 1 blank page.

Answer **all** the questions.

INVESTIGATION

RIGHT SPIRALS

This investigation is about the lengths of spirals drawn on a square grid.

A robot starts from 0 and moves 1 unit to Corner 1. It then turns right and moves 1 unit to Corner 2. It then turns right and moves 2 units to Corner 3. It then turns right and moves 2 units to Corner 4. It then turns right and moves 3 units to Corner 5.

This forms a spiral, shown on the grid below.

					10		
		5					
			1	2			
			0				
		4		3		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
						- - - - - - - - - - - - - - - - - - -	

The robot continues to turn and move in the same way.

- 1 (a) Continue the spiral to Corner 10.
 - (b) The length of the spiral from 0 to Corner 4 is 6 units.

Find the length of the spiral from 0 to Corner 10.

Corner number	Lengths added	Length from 0
1	1	1
2	1 + 1	2
3	1+1+2	4
4		6
5		
6	1 + 1 + 2 + 2 + 3 + 3	12
7	1 + 1 + 2 + 2 + 3 + 3 + 4	16
8	1 + 1 + 2 + 2 + 3 + 3 + 4 + 4	
9		
10	1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5	

3

(c) Use your spiral to complete this table.

2 This table shows the first five terms of a sequence.

п	1	2	3	4	5	6	7
Term of the sequence	1	3	6	10	15		

- (a) For this sequence, fill in the next two terms.
- (b) Write down the mathematical name for this sequence of numbers.
- (c) The *n*th term for this sequence is $\frac{n(n+1)}{2}$.

Show that this is correct when n = 5.

- 3 This table shows the length, *L*, of the spiral from 0 to an **even numbered** corner, *k*.
 - (a) Use your table from question 1(c) to help you complete this table.

k	Length (L)		
2	2		
4	6		
6	12		
8			
10			
12			
14	56		
16			

0607/52/O/N/18

n	Term of the sequence	k	Length (L)
1	1	2	2
2	3	4	6
3	6	6	12
4	10	8	
5	15	10	
6		12	

(b) Complete this table using your answers to question 2(a) and question 3(a).

(i) Complete this formula for *n* in terms of *k*.

n =

(ii) Write down the connection between the length, *L*, and the term of the sequence.

.....

(iii) Use part (i), part(ii) and question 2(c) to show that the formula for the length, L, of the spiral from 0 to an even numbered corner, k, is

$$L = \frac{k}{2} \left(\frac{k}{2} + 1 \right).$$

(iv) Show that the formula from part(iii) is correct for Corner 6.

(v) Show that the formula from part (iii) is not correct when k is an odd number.

- 4 (a) Write down the length of the spiral
 - (i) from Corner 5 to Corner 6,

.....

(ii) from Corner 6 to Corner 7.

.....

.....

.....

- (b) When k is an even number, find an expression, in terms of k, for the length of the spiral
 - (i) from Corner (k-1) to Corner k,

(ii) from Corner k to Corner (k + 1).

6

5 (a) Using question 3(b)(iii) and question 4 (b)(i), show that the length of the spiral from 0 to Corner 7 is 16 units.

(b) Find the length of the spiral from 0 to Corner 91.

.....

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.