

MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

MMM. Hiremepapers.com

0607/21 Paper 2 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		2	Mark Scheme: Te			Syllabus	Paper
			IGCSE – May/June 2012			0607	21
1		(<i>x</i>) =	5, $(y) = -1$	2	B1 each, or M1 for (allow 1 numerical	attempt to eliminate slip)	<i>x</i> or <i>y</i> [2]
2		08 13	08 13 oe		M1 for distance/speed seen (implied by 0.3) A1 for 18 minutes		
3		(±)	$\overline{\frac{2A}{\pi}}$	3	M1 for × 2 correctl M1 for ÷ π correctl M1 for $$ correctl All independent, in	y y	[2]
4	(a)	2√1.	$\overline{3}$ or $\sqrt{52}$ as final answer	2	M1 for $4^2 + 6^2$		[3]
	(b)	$4\sqrt{5}$	or $\frac{12\sqrt{5}}{3}$ or $\sqrt{80}$	2	M1 for $\cos\theta = \frac{g}{12}$	or better	[4]
5				2		th vertex twice as hig is in same places as y w the x axis)	
							[2]
6	(a)	1, 3		2	B1 each		
	(b)	5 + 2	$2\sqrt{2}$	2	M1 for $3\sqrt{2}\sqrt{2} - \sqrt{2}$	$\sqrt{2} + 3\sqrt{2} - 1$ or better	[4]
7	(a) (i	i) 6		1			
	(ii	i) 7		1			
	(b)	$\frac{7}{12}$ o	e	1			
	(c)	$\frac{2}{6}$ oe		1 ft	If $\frac{2}{6}$ not seen, then	ft their part (a)(i)	[4]
8	(a)	(<i>x</i> +)	(x-6)	2	SC1 for any pairs of when multiplied out	of brackets giving two tt.	o correct terms
	(b)	(y +)	(2z)(x-3)	2	M1 for $x(y+2z) - ($ or better $)$	3(y+2z) or $y(x-3)$	(+ z(2x - 6)) [4]
9		(±)1.	2 oe	3	M2 for $y = \frac{6}{\sqrt{x}}$ oe	or M2 for $\frac{y}{3} = \frac{\frac{1}{\sqrt{25}}}{\frac{1}{\sqrt{4}}}$	be
					(M1 for $y = \frac{k}{\sqrt{x}}$ oe, where $k \neq 1$, then dep M1		lep M1 for
					$y = \frac{\text{their } k}{\sqrt{25}})$		[3]

	Page 3	Mark Scheme:	Mark Scheme: Teachers' version			Paper
		IGCSE – N	IGCSE – May/June 2012			21
10	(a) (b)	33 $n^2 - 3$	1 3	Ignore extra terms M1 for reaching se M1 for $an^2 + bn + bn$		
11		40	2	M1 for $\left(\frac{6}{3}\right)^3$ or $\left(\frac{6}{3}\right)^3$	$\left(\frac{3}{6}\right)^3$ seen	[2]
12	(a) (i)	4	1			
	(ii)	-3	1			
	(b)	288	3	M1 for $a \log b = \log (\operatorname{Implied} by 3^2 \operatorname{or} 2)$ M1 for $\log p + \log (\operatorname{Implied} by y = 3^2)$ used with incorrect Note $\log 288$ score	⁵ seen) $q = \log pq$ correctly $\times 2^5$ but can be seen \approx values of p, q .)	y used