CANDIDATE NAME

0607/01
CAMBRIDGE INTERNATIONAL MATHEMATICS
October/November 2010
Paper 1 (Core) 45 minutes

Candidates answer on the Question Paper
Additional Materials: Geometrical Instruments

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
Do not use staples, paper clips, highlighters, glue or correction fluid.
You may use a pencil for any diagrams or graphs.
DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

CALCULATORS MUST NOT BE USED IN THIS PAPER.

All answers should be given in their simplest form.
You must show all the relevant working to gain full marks and you will be given marks for correct methods even if your answer is incorrect.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 40 .

This document consists of 10 printed pages and $\mathbf{2}$ blank pages.

Formula List

Area, A, of triangle, base b, height h.
$A=\frac{1}{2} b h$

Area, A, of circle, radius r.

Circumference, C, of circle, radius r.

Curved surface area, A, of cylinder of radius r, height h.

Curved surface area, A, of cone of radius r, sloping edge l.
$A=\pi r^{2}$
$C=2 \pi r$

Curved surface area, A, of sphere of radius r.

Volume, V, of prism, cross-sectional area A, length l.
$A=2 \pi r h$
$A=\pi r l$

Volume, V, of pyramid, base area A, height h.
$V=\frac{1}{3} A h$
Volume, V, of cylinder of radius r, height h.
$V=\pi r^{2} h$

Volume, V, of cone of radius r, height h.
$V=\frac{1}{3} \pi r^{2} h$

Volume, V, of sphere of radius r.
$V=\frac{4}{3} \pi r^{3}$

Answer all the questions.

1 (a) Find the lowest common multiple of 6 and 9 .

> Answer (a)
(b) Work out $5^{2}-2^{3}$.

Answer(b)

2 (a) Samir and Josef divide $\$ 250$ in the ratio 2:3.
Calculate how much money each receives.
\qquad
(b) A recipe for 3 people needs 600 g of pasta.

Work out how much pasta is needed for 8 people.
$3 \quad P(2,3)$ and $Q(4,7)$ are two points.
(a) Find the gradient of the line joining P and Q.
\qquad)

4

NOT TO
SCALE

A circle, centre O, has an area of $600 \mathrm{~cm}^{2}$.
Find the area of the shaded sector.
cm^{2}

5 The heights of a number of students were measured.
The results are shown in the cumulative frequency diagram.

(a) How many students were measured?

> Answer(a)
(b) Find the interquartile range.

> Answer(b)

Answer(b)(i)
....... ,
.......1]
(ii) Write down the nth term of this sequence.

7 Solve the simultaneous equations $2 x=y+8$ and $3 x+2 y=5$.

$$
\begin{array}{r}
\text { Answer } x= \\
y=
\end{array}
$$

8 (a)

NOT TO
SCALE

In the diagram $D E$ is parallel to $B C$.
$A D=D E$ and angle $A B C=70^{\circ}$.
Find the value of x.

Answer (a) $x=$

For
(b)

NOT TO
SCALE

The diagram shows a circle, centre O, with a tangent drawn at P.
Angle $O Q P=20^{\circ}$.
Find the values of y and z.

$$
\begin{equation*}
\text { Answer(b) } y= \tag{1}
\end{equation*}
$$

$z=$

9 (a) Expand the brackets and simplify.

$$
3(x-y)-2(x-5 y)
$$

Answer(a)

(b) Factorise completely.

$$
3 x^{2}+9 x y^{2}
$$

(c) Write as a single fraction.

$$
\frac{2 x}{3}-\frac{x}{5}
$$

NOT TO
For

A cuboid has a square base of side 5 m and a height of 4 m .
(a) Calculate the volume of the cuboid.

$$
\text { Answer(a) } \mathrm{m}^{3} \quad \text { [1] }
$$

(b) Calculate the total surface area of the cuboid.

Student	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}
Test 1	25	20	40	25	50	20	30	40
Test 2	30	25	35	25	40	30	35	40

The table shows the marks scored by 8 students in two mathematics tests. The marks for students A to F are shown on the scatter diagram below.

(a) On the diagram, plot the marks for students G and H .
(b) The mean for Test 1 is 31.25 .

Calculate the mean for Test 2.

> Answer(b)
(c) Plot the mean point on the scatter diagram.
(d) Draw the line of best fit on the scatter diagram.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

