UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

0607/04

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0607	04

M marks are given for a correct method.

A marks are given for an accurate answer following a correct method.

B marks are given for a correct statement or step.

D marks are given for a clear and appropriately accurate drawing.

P marks are given for accurate plotting of points.

E marks are given for correctly explaining or establishing a given result.

Abbreviations

- cao correct answer only
- cso correct solution only
- ft follow through
- oe or equivalent
- soi seen or implied
- ww without working
- www without wrong working

© UCLES 2009

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0607	04

Γ

1 (a)	200 (or 2200) ÷ 20 10 (or 200) × 11 oe	M1 M1	Implied by 10 Independent
(b)	57.5(0)	B2	If B0 , M1 for $\frac{50 \times 5 \times 3}{100}$ oe (Implied by 7.50)
(c)	67.49 as final answer	B3	If B0 , M2 for $60\left(1 + \frac{4}{100}\right)^3$ oe M1 for × 1.04 more than once oe 67.49 or 67.5 imply M2 [7]

2 (a)	37.2 (or 37.20 – 37.21)	B1	
(b)	37	B1	
(c)	36	B1	
(d)	36	B1	
(e)	2	B1	[5]

3 (a)	(x+2y)(2+p)	B2	B1 for $2(x+2y) + p(x+2y)$ o.e.
(b)	Reasonable sketch of parabola (U shape) cutting <i>x</i> -axis either side of <i>y</i> -axis – dep -2.16, 1.16	M1 M1dep A1, A1	If using formula, M1 for $\sqrt{2^2 - 4(2)(-5)}$ seen and if form $\frac{p + (or -)\sqrt{q}}{r}$ then M1 for $p = -2$ and $r = 2 \times 2$ $\left(\frac{-2 \pm \sqrt{44}}{4}\right)$ SC1 for -2.2, 1.2 or -2.158, 1.158 with or without working SC2 for -2.16, 1.16 without working
(c)	$y = k\sqrt{w}$ $4 = k\sqrt{9}$ $(y) = 8 \qquad \text{www3}$	M1 M1	If using $\frac{y}{4} = \frac{\sqrt{36}}{\sqrt{9}}$ M2
	$(y) = 8 \qquad \text{www3}$	A1	$k = \frac{4}{3}$ implies M2 [9]

© UCLES 2009

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0607	04

4 (a)	K L	B1	
(b)	A B	B2	SC1 for any 4 of the 5 parts shaded
(c)	4	B2	Allow B2 for embedded if clear If B0 , B1 for Venn diagram with universal set containing 2 intersecting sets or 6 + 10 - (20 - 8) or better seen or $10 - x + x + 6 - x = 20 - 8$ oe [5]
5 (a) (i)	Correct shape Point of inflexion at origin	B1 B1dep	
(ii)	Correct shape Correct position relative to axes	B1 B1dep	
(b)	0, 4 cao	B1,B1	Do not allow any decimals in answers
(c)	(3, -27) cao	B1,B1	Do not allow any decimals in answers
(d)	-2.33 (-2.325), 4.41 (4.407 - 4.408)	B1,B1	SC1 for -2.3 and 4.4 [10]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0607	04

6	(a)	$\frac{35 + \text{their}(1\frac{3}{4} \times 4)}{2\frac{1}{2} + 1\frac{3}{4}}$	M2	M1 for $1\frac{3}{4} \times 4$ or 7 seen
		9.88 (9.882) www3	A1	
	(b) (i)	$\begin{array}{ccc} 10 \div 12.6 \times 60 & \text{oe} \\ 47.6 & (47.61 - 47.62) & \text{www2} \end{array}$	M1 A1	10 ÷ 0.21, 0.7936 × 60 Allow 48 also www2
	(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1	[7]

7 (a) (i)	+ 1, then $\div 2$ or $\frac{y+1}{2}$ or $x = 2y - 1$	M1	
	$\frac{x+1}{2}$ oe www2	A1	$\frac{y+1}{2}$ scores M1 only
(ii)		B1	Reasonable sketch to be close to $(-1,0)$, $(0, 0.5)$ and $(1, 1)$ 2 mm accuracy
(b) (i)	$\sqrt[3]{x}$ oe	B1	
(ii)		B1 B1dep	Correct shape. Intersecting $y = x^3$ between $x = 0.5$ and 1.5 and close to $y = x$.
(iii)	Reflection y = x	B1 ft B1 ft	ft only if their graph is a reflection correct or ft [8]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0607	04

8 (a) (i)	$\frac{3^2 + 5^2 - 7^2}{2.3.5}$ 120°	M2 A1	M1 for correct implicit equation $7^2 =$ Any other method must be complete and scores M2 Without any working SC2 If M0, but 60° after some working SC1 Radians answer 2.09 without working SC1
(ii)	$\begin{array}{ccc} 0.5 \times 3 \times 5 \ \text{sin(their 120)} & \text{oe} \\ 6.5(0) \ (6.495) \ \text{ft} & \text{www2} \end{array}$	M1 A1 ft	(For Hero's formula s = 7.5) ft their angle with relevant sides
(b) (i)	(0)40	B1	
(ii)	280 cao	B2	M1 for 100 (or 220 – their (a)(i)) at <i>P</i> or 80 (or their (a)(i) – 40) at <i>B</i> soi [8]

9 (a)			
	Reasonable sketch of cubic with two turning points seen in correct order 2 turning points in correct quadrants	B1 B1dep	Penalty –1 for double or feathery lines
(b)	-11.1 to 4.24 (-11.05 to 4.236) as final answer	B1,B1	SC1 –11 to 4.2 or SC1 for both 3 sf (or more) numbers seen [4]

Page 7	ge 7 Mark Scheme: Teachers' version		Paper
	IGCSE – May/June 2009	0607	04

10			Throughout the question ratios score
			zero.
			If using decimals, 2 s.f. correct answers –
			penalty of 1 once
			Use of words e.g. 5 in 28 or 5 out of 28,
			correct answers – penalty of one once.
			For method marks only accept
			probabilities between 0 and 1
(a) (i)	$\frac{14}{28}$ oe, $\frac{5}{28}(0.179)$, $\frac{9}{28}(0.321)$	B1,B1,B1	0.5, 0.1785 - 0.1786, 0.3214
(ii), (iii)			
(b) (i)		M1	
	$\frac{196}{784}$ oe $(\frac{1}{4})$ www 2	A1	
	/84 (4)		
(ii)		M1	
	$\frac{140}{784}$ oe $\left(\frac{5}{28}\right)$, (0.179)	A1	0.1785 - 0.1786
	/84 (28) ((11))		
(iii)	$1 - \frac{9}{28} \times \frac{9}{28}$ oe	M1	
	$\frac{703}{784}$ oe (0.897) www 2	A1	0.8966 - 0.8967
	/84		[9]
11 (a)	Similar	B 1	Allow enlargement oe
(b) (i)	$\frac{QT}{QT} = \frac{6}{2}$ oe	M1	
	$\frac{QT}{2.5} = \frac{6}{3} \qquad \text{oe}$		
	5 www2	A1	
(ii)	$\left(6\right)^2$ or h^2 or	M1	<i>k</i> must be from (i)
()	$\left(\frac{6}{3}\right)^2$ or k^2 oe	1711	
		A 1	

A1

M2

A1

M1 for any correct implicit form

Radians 0.9546. ww implies M2

[8]

e.g. $\frac{\sin X}{2.5} = \frac{\sin 26.5}{3}$

11.2 cao www2

21.8 (21.82 - 21.83) www3

 $\sin X = \frac{\sin 26.5}{3} \times 2.5$

(iii)

© UCLES 2009

Page 8	Page 8 Mark Scheme: Teachers' version		Paper
	IGCSE – May/June 2009	0607	04

12 (a)	$\frac{30}{360} \times \pi \times 24$ oe	M1		
	6.28 (6.28 – 6.284) www2	A1	Accept 2 π	
(b)	$\frac{30}{360} \times \pi \times 12^2$	M1		
	37.7 (37.68 – 37.70) www2	A1	Accept 12π	
(c)	their (b) × 3	M1		
	113 (113.0 - 113.1) ft www2	A1ft	Accept 36π	
(d)	their (b) $\times 2$	M1		
	$2 \times 3 \times 12$	M1		
	their (a) \times 3	M1		
	166 (166.2 – 166.3) cao www4	A1	Accept $30 \pi + 72$	
				[10]

13 (a)	10 correct points	B3	B2 for 8 or 9 correct points, B1 for 6 or 7 points
(b)	Positive	B1	Ignore any wording which does not spoil answer Accept accurate description linking height to points
(c) (i) (ii)	179.9, 53.2	B1,B1	Accept 180 for 179.9
(d) (i)	(p) = 0.386h - 16.2 (0.3855 - 0.3856) (-16.16)	B2If seen in correct form B1 for 0.386, for -16.2. (Allow 0.39)SC1 if in correct form and both term correct to 2 sf	
plotted. 190 Would extend to <i>p</i> -axis within 3 squares B1 Gradient must be posi		Must be ruled and be from at least 165 to 190 Gradient must be positive SC1 if accurate and not ruled	
(iii)	52 or 53 or 54	B1	Must be integer [11]

Page	9				Syllabus 0607	Paper
		IGCSE – May/June	SE – May/June 2009			04
			1			
14 (a)	x + y =	through (0, 0) and (5, 10) 10 through (10, 0) and (0, 10) = 10 through (5, 0) and (0, 10)	L1 L1 L1	Max 2	traight line ruled if not ruled 2 mm accuracy at po	ints indicated
(b)	Correc	t region unshaded ft	B1 ft		indication by label 7 $y = \frac{1}{2}x$ for $y = 2x$	f if clear
(c) (i)	3.2 - 3	.4 ft	B1 ft	ft their region in (b) if B1 scored (ans 6.6if ft in (b)) or region T_2 if (a) correct (ans 2.5).		
(ii)	3		B1	ft their region in (b) if B1 scored (ans 6 if ft in (b)) or region T_2 if (a) correct (ans 2).		
(d)	1,9 2,7	ft	B1 ft B1 ft	least 2 Treat a $x =,$	T. Only full ft so pairs score B2 ft. as ordered pairs unles $y = \dots$ all reversed	
15 (a) (i)	20		D1			
15 (a) (i)	30		B1			
(ii)	$\frac{360}{x}$		B1	Not x =	=	
(iii)	$\frac{360}{x+8}$		B1	Not x =	=	
(b) (i)	$\frac{360}{x}$ -	$\frac{360}{x+8} = 16$ oe	M2	SC1 fo	or sign errors	
		(+8) - 360x = 16x(x+8) oe	M1	all thre	n M2 or SC1 , for core terms over common tiplying throughout b	on denominator
	$16x^2 +$	$2880 - 360x = 16x^{2} + 128x$ $128x - 2880 = 0$ $- 180 = 0$	E1	At leas	dent on M2 M1 . It one of these two lin onclusion without an ons. Condone the ab	y errors or
(ii)	(<i>x</i> + 18)(<i>x</i> – 10)	B2		SC1 for $(x \pm p)(x \pm$	- /
(iii)	-18, 10) ft	B1 ft	Correc	t or ft SC1	
(iv)	10		B1 ft	Can ft	a positive root	[11]