CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0581 MATHEMATICS

0581/43

Paper 4 (Extended), maximum raw mark 130

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0581	43

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
WWW	without wrong working
art	anything rounding to

soi seen or implied

Qu.	Answers	Mark	Part Marks
1 (a) (i)	45	2	M1 for $5 \times 63 \div 7$
(ii)	20	2	M1 for $5 \times 56 \div 14$
(iii)	23.4 or 23.38 to 23.41	3	M2 for $\frac{13 \times 4.9 - 48.8}{13 \times 4.9} \times 100$
			or $\frac{4.9 - 48.8 \div 13}{4.9} \times 100$ Or
			M1 for $\frac{13 \times 4.9 - 48.8}{13 \times 4.9}$ or $\frac{48.8}{13 \times 4.9} \times 100$ or 76.6[]
(b)	128	4	Using fractions (percentages / decimals): M1 for $\frac{3}{4} \times \frac{3}{8} \left[= \frac{9}{32} \right]$ or $\frac{75}{100} \times 37.5$ [= 28.125%]
			A1 for $\frac{9}{32}$ or 28.125[%]
			M1 for $36 \div \frac{9}{32}$ oe
			or $36 \times \frac{100}{28.125}$ oe
			Partial percentages
			M1 for (Remaining) $\frac{100 \times 36}{37.5}$ [= 96]
			A1 for 96
			M1 for $96 \div \frac{75}{100}$ oe
			SC1 for 288

	Page		Syllabus Paper				
		IGCSE – October/N	lovembe	er 2013 0581 43			
2	(a)	119.94[] nfww	3	M2 for $\frac{62 \times \sin 122}{\sin 26}$ or M1 for $\frac{AC}{\sin 122} = \frac{62}{\sin 26}$ oe			
	(b)	109 or 108.7 to 108.8 nfww	4	SC2 for correct answer from alternative methods M2 for $119.9^2 + 55^2 - 2 \times 119.9 \times 55\cos 65$ A1 for $11827[\cdot]$ or 11834 to $11835[\cdot]$ or M1 for implicit version			
	(c)	1970 or 1969 to 1970.4	2	M1 for $\frac{1}{2} \times 119.9 \times 62 \times \sin 32$			
	(d)	22300 or 22310 to 22320	3	M2 for (<i>their</i> (c) + $0.5 \times 55 \times 119.9 \times \sin 65$) × 4.5 or M1 for <i>their</i> (c) + $0.5 \times 55 \times 119.9 \times \sin 65$			
3	(a)	9-2x, 7-2x oe	2	B1 for each, accept in any order			
5	(b)	$x(9-2x)(7-2x)4x^{3}-32x^{2}+63x$	M1FT A1	Correct expansion and simplification with no errors			
	(c)	24 20	2	B1 for each correct value			
	(d)	Correct curve	3	B2FT for 5 correct plots			
				or B1FT for 3 or 4 correct plots			
	(e)	$0.65 \text{ to } 0.75 \le x \le 2$ oe	2	B1 for 0.65 to 0.75 seen			
	(f) (i)	36 to 37	1				
	(ii)	1.2 to 1.4	1				
4	(a)	48 and 84 66 and 66	2	B1 for each pair			
	(b)	540	2	M1 for 3×180 or $(2 \times 5 - 4) \times 90$ or $5 \times (180 - 360 \div 5)$ oe			
	(c)	1620	2	M1 for 7 × 360 – <i>their</i> 540 – 360			
	(d) (i)	2x + 5 + 3y - 20 + 4x - 5 + x + y - 10 = 360 oe	1	Allow partial simplification but not $7x + 4y - 30 = 360$			
	(ii)	2x + 5 + 3y - 20 = 180	1				
	(iii)	[x =] 30, [y =] 45 nfww	4	M1 for correct multiplication M1 for correct elimination A1 $x = 30$ or $y = 45$			
				If 0 scored SC1 for correct substitution to find the other variable			
	(iv)	65, 115, 115, 65	1	Accept in any order			

	Page 4		Mark Sch	ieme		Syllabus	Paper	7
			IGCSE – October/November 2013		0581	43	-	
								-
5	(a) (i)		or 3.812 to 3.813 or nin nfww	4	and M1 for use of both boundarie and	points soi (condone 1 $\sum fx$ with x in correct s (condone 1 further and M1) for $\sum fx \div 8$	ct interval includi er error or omissio	ing
	(ii)	Correc	et histogram	4	B1 for each correct blockandB1 for correct widths			
	(b) (i)	$\frac{2}{5}$, $\frac{1}{2}$	$\frac{1}{4}$, $\frac{3}{4}$, $\frac{1}{4}$ oe	2	B1 for $\frac{2}{5}$ or both $\frac{1}{4}$ s in correct place			
	(ii)	$\frac{18}{20}$ n	fww $\left[\frac{9}{10}\right]$	3	or $\frac{3}{5} \times \frac{3}{4}$ + or M1 FT for <i>th</i> .	$-their \frac{2}{5} \times their \frac{1}{4}$ $\frac{3}{5} \times their \frac{1}{4} + their \frac{2}{5} \times their \frac{1}{4}$ $eir \frac{2}{5} \times their \frac{1}{4}$ $\frac{1}{4} + their \frac{2}{5} \times \frac{3}{4}$	$eir \frac{2}{5} \times \frac{3}{4}$ oe	
	(iii)	$\frac{27}{125}$	[0.216]	2	M1 for $\frac{3}{5} \times \frac{3}{5} \times \frac{3}{5}$			
6	(a) (b)	329.7 to 330 2970 or 2967 to 2969.[]			or M1 for ¹ / ₂ 7 SC2 for answe	$2^{2} + 8.75^{2} - 3.25^{2}$) $\pi 12^{2}$ or $\frac{1}{2}\pi 8.75^{2}$ or er 1318 to 1320 4 + 17.5 + 6.5) × 35	or $\frac{1}{2}\pi 3.25^2$	
					or M2 for $\frac{1}{2}\pi(24 + 17.5 + 6.5) \times 35$ or M1 for $\frac{1}{2}\pi \times 24$ or $\frac{1}{2}\pi \times 17.5$ or $\frac{1}{2}\pi \times 6.5$ SC3 for 3955 to 3960 dep on SC2 in (a)			
	(c)	11.5 c	or 11.6 or 11.53 to 11.55	3FT	M1 for <i>their</i> (a) × 35 A1 for 11500 or 11530 to 11550			

	Page	5	Mark Scheme	Syllabus	Paper	
			October/Novembe	0581	43	
	(d) (i)	$\frac{r}{h} = \frac{20}{40}$ or $\frac{r}{20} = \frac{h}{40}$	1	Accept 20:40 $\frac{20}{40} = \frac{1}{2}$ and		p 40r = 20h [r = h/2]
	(ii)	35.3 or 35.31 to 35.34	3	M2 for $\sqrt[3]{\frac{thei}{s}}$ or	2	
					$1545 = \frac{1}{3} \times \pi \times \left(\frac{1}{3} \times \pi \times r^2 \times 2 \right)$ $5 = \frac{1}{3} \times \pi \times r^2 \times 2$	/
7	(a) (i)	$\frac{3}{2}$ or 1.5	2	M1 for $\frac{14-()}{8-(-)}$	$\frac{-4)}{-4)}$ oe	
	(ii)	$y = \frac{3}{2}x + 2$ oe	2	B1 for $y = th$ or $y = mx + \frac{3}{2}x + \frac$	$eir \ \frac{3}{2}x + c \text{o.e.}$ 2, $m \neq 0$ 22	
	(iii)	$\begin{pmatrix} 12\\18 \end{pmatrix}$	1			
	(iv)	21.6 or 21.63[]	2	M1 FT for the	<i>ir</i> 12^2 + <i>their</i> 18^2	oe
	(b) (i)	(a) $3b - 4a$	1			
		(b) $\frac{1}{5}(6\mathbf{b}-8\mathbf{a})$ oe simpl	lified 2	M1 for $\frac{1}{5}(123)$	$(\mathbf{a} + 6\mathbf{b}) - 4\mathbf{a}$ or AB	R = AO + OR
		(c) $6\mathbf{a} + 3\mathbf{b}$ oe simplified	d 1			
	(ii)	OR is parallel to OT	1	Dep on \overrightarrow{OT} cor	rect	
	(iii)	$\frac{9}{4}$ or 2.25	2	M1 for $\left(\frac{3}{2}\right)^2$		

	Page 6 Mark Sch			cheme		Syllabus	Paper	
	IGCSE – October/N				er 2013	0581	43	
8	(a)	$\frac{2(s-ut)}{t^2}$ oe	nfww	3	and M1 for a corre and	ect rearrangement the transformation by t^2	o isolate the <i>a</i> term	
	(b)	36.75 cao		3	M2 for $15.5 + 2.5 \times 8.5$ B1 for two of 15.5, 2.5, 8.5 seen			
	(c) (i)	$\frac{16}{5}$ or better	[3.2]	1				
	(ii)	11.2		4	M2 for $\frac{1}{2}(25 + 10)16$ (= 280) or M1 for appreciation of distance from area and M1 for <i>their</i> 280 ÷ 25 (dep on M1)			
9	(a)	6 10	$(n+3)^{2}$ or $3(n+1)$ $(n+1)^{2}$	9	 B2 for 15, 6, or B1 for two c B3 for 18, 10 or B1 for each B2 for 3n + 3 or M1 for 3n + B2 for (n + 1) or M1 for a que 	Forrect values a, 36 correct value be + k, for any k		
	(b)	14		2	M1 for $(n + 1)$ or $15 \times 16 = 1$	(n+2) = 240 or b 240	etter	
	(c) (i)	$\frac{1}{2} + p + q = 9$		1				
		[p =] 3 $[q =] \frac{11}{2}$		5	M1 for correct equations A1 for $[p =]$	$x^2 + p \times 2^2 + q \times 2^2$ of multiplication and	l subtraction of <i>their</i>	

	Page 7			Mark Scheme			Syllabus	Paper	
	IGCSE – October/N			ovembe	er 2013	0581	43		
10	(a) $\frac{x}{x+3}$ cao			3	B1 for $(x + 3)$ B1 for $x(x - 3)$				
	(b)	$\frac{3}{2}$ and	-5			7	or M1 for mu or $\frac{15(x+1)}{x(x+1)}$ and B2 for 2: or B1 for 15x	$\frac{1}{1}$ $x^{2} + 7x - 15 [= 0]$ $x + 15 - 20x \text{ or } 2x^{2}$ $2x - 3)(x + 5) \text{ or } th$ $x + a)(x + b)$ $5 \text{ or } a + 2b = 7$	denominator only