

MARK SCHEME for the May/June 2013 series

0581 MATHEMATICS

0581/43

Paper 4 (Extended), maximum raw mark 130

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		Mark Scheme			Paper		
	IGCSE – May	/June 20	13	0581	43		
Abbreviationscaocorrect answer onlycsocorrect solution onlydepdependentftfollow through after erroriswignore subsequent workingoeor equivalentSCSpecial Casewwwwithout wrong workingartanything rounding tosoiseen or implied							
1 (a)	2814 final answer	2	M1 for 2345 ÷	- 5 soi by 469 or ans = 2810			
(b)	(b) 257.95 final answer (c) (i) 280.5[0] final answer (ii) 375		M1 for 2345 ×	0.11 oe or ans $= 2$	58		
(c) (i)			M1 for 330 × ((1 - 0.15) oe or ans = 281			
(ii)			M2 for 330 ÷ (Or M1 for 330	(1 - 0.12) oe = $(100 - 12)\%$ oe			
(d)	1605.89 or 1605.9[0]	3	1605.898751 or 1500 × 1.07	$(1 + 0.023)^3$ oe soi (05) $0 \times (1 + 0.023)^2$ oe			
(e)	23.1 or 23.07 to 23.08	3	M2 for $\frac{325 - 2}{325}$ Or M1 for $\frac{325}{25}$ better or $\frac{250}{325} \times 100$	$\frac{5-250}{325}$ soi by 0.230	07 3sf or		

	Pa	ge 3	Mark So	Mark Scheme			Paper	
			IGCSE – May	/June 20	013 0581 43			
					1			
2	(a)	(i)	Perpendicular bisector of <i>QR</i> ruled with 2 correct sets of arcs centred <i>Q</i> and <i>R</i>	2	B1 for correct bisector ruled			
			Bisector of angle <i>SPQ</i> ruled with correct arcs. (Marks on <i>PS</i> and <i>PQ</i> and correct pair of arcs)	2	B1 for correct angle bisector ruled			
			Compass drawn arc centre R with radius 6 cm (±2 mm)	B2	B1 for any compass drawn arc centre R not used in any construction with no feathering			
			Correct region shaded cao	1dep	Dependent on a	all B4 marks for the	correct loci	
		(ii)	217 to 221	1				
	(b)	(i)	6360 or 6361 to 6363	2	M1 for $\pi \times 45^2$	M1 for $\pi \times 45^2$		
		(ii)	165 or 164.9 to 165	2	M1 for $\frac{210}{360} \times 2\pi \times 45$			
3	(a)	(i)	$x \ge 5$	1 -1 once for strict ineq		ct inequalities in (i)	to (iii)	
		(ii)	$y \ge 11$	1				
	((iii)	$x + y \ge 20$	1				
	(b)		$4x + 8y \le 160$ and divide by 4	1	If there is a final inequality it must be the given one			
	(c)	(i)	x = 5 ruled	1	Must be on cor	rect grid line		
			y = 11 ruled	1	Must be on cor	rect grid line		
			x + y = 20 ruled	2		intercept correct w t not parallel to an a		
			x + 2y = 40 ruled	2	B1 for one axis intercept correct when extended if necessary but not parallel to an axis			
			Correct shading of unwanted region	1dep	Dependent on 6 marks earned for the boundarie			
		(ii)	29	2		valuated where (x, y) eral and x and y are		

	Page 4		Syllabu				
		IGCSE – Ma	ay/June 20 [·]	13 0581	43		
4	(a)	3080	2	M1 for $\frac{1}{2} \times 7 \times 22 \times 40$			
	(b)	46.2 or 46.18 to 46.2 www	4	M3 for $\sqrt{7^2 + 22^2 + 40^2}$ or M2 for $7^2 + 22^2 + 40^2$ soi by 2133 or M1 for correct Pythagoras on one face			
	(c)	8.7 or 8.7 to 8.72 www	3	M2 for $\sin^{-1} \frac{7}{their(b)}$ oe			
				or M1 for $\sin = \frac{7}{their(b)}$ oe			
	(d)	217	3	M1 for $\frac{4}{3} \times \pi \times 1.5^3$ soi by 14 and M1 dep for <i>their</i> (a) $\div \pi$ 218. Dependent on M1 earn	<i>their</i> 14.14 soi by		
	(e) (i)	25.13875 final answer	2	B1 for 4.55 and 11.05 seen then spoiled	nd 11.05 seen or 25.13875 seen and		
	(ii)	25.14	1FT	1FT Strict FT <i>their</i> (e)(i) correct to 4s.f. if is possible			
5	(a)	-5.04, 1.75, 0	3	B1 for each correct value			
	(b)	Fully correct curve	5	B3FT for 10 correct plots from <i>their</i> (a) B2FT for 8 or 9 correct plots or B1FT for 6 or 7 correct plots and SC1 for two branches not joined			
	(c)	-1.6 to - 1.5 -0.4 to -0.3 1.8 to 1.9	1 1 1				
	(d)	-2.6 to -2.5 www -0.4 to -0.3 1	W 1 1 1 After 0 scored, M1 for $y = 2x - 2$ drawn				
	(e)	3.25 to 4.25 with correct tanger	nt 3	B1 for correct tangent			
				B2 for answer in range dep tangent	on close attempt at		
				M1dep for $[-]\frac{rise}{run}$ used w			
				tangent, dep on correct or cl tangent	ose attempt at		

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0581	43

6	(a)	$\frac{3}{10}$ correctly placed	1	Accept 0.3
		$\frac{6}{9}$ and $\frac{3}{9}$ correctly placed	1	Accept 0.667 or better and 0.333 or better
		$\frac{7}{9}$ and $\frac{2}{9}$ correctly placed	1	Accept 0.778 or better and 0.222 or better
	(b)	$\frac{42}{90}$ or $\frac{21}{45}$ or $\frac{14}{30}$ or $\frac{7}{15}$	3	M2 for $\frac{7}{10} \times \frac{3}{9} + \frac{3}{10} \times \frac{7}{9}$ soi by 0.467 or better
				or M1 for $\frac{7}{10} \times \frac{3}{9}$ or $\frac{3}{10} \times \frac{7}{9}$ soi by 0.233 or better
7	(a) (i)	Triangle at $(1, 3) (1, 9) (3, 3)$	2	SC1 for correct vertices not joined or triangle(1, 1) (3, 1) (1, 7)
	(ii)	$\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$	2	SC1 for $\begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}$, $k \neq \pm 1$ or 0
				or $\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$
	(b) (i)	Shear <i>x</i> -axis oe invariant [factor] 2	1 1 1	
	(ii)	$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$	2FT	FT from <i>their</i> 2 in (b)(i) SC1 for $\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$, $k \neq 0$
				$ \begin{array}{c} (0 & 1) \\ \text{or} \begin{pmatrix} 1 & 0 \\ 2\text{FT} & 1 \end{pmatrix} \end{array} $
8	(a) (i)	27	1	
	(ii)	54	1	
	(iii)	153	1	
	(b) (i)	59.6 or 59.57 www	4	M2 for $45^2 + 32^2 - 2 \times 45 \times 32 \times \cos 100$ or M1 for implicit cos rule and A1 for 3549
	(ii)	22.[0] or 21.99 www	3	M2 for $324 \div (\frac{1}{2} \times 32 \times \sin 67)$ or M1 for [324 =] $\frac{1}{2} \times 32 \times x \times \sin 67$
	(iii)	81[.0]	2	B1 for 2^2 or $(\frac{1}{2})^2$ oe seen or $\frac{1}{2} \times 16 \times \frac{1}{2}$ their(b)(ii) × sin67

	Page 6		Mark Scheme			Syllabus	Paper	
			IGCSE – May/	June 20	2013 0581 43			
9	(a) (i)	14		1				
	(ii)	8		1				
	(iii)	30 – the	eir (ii)	1FT				
	(b)	$\frac{11}{80}$		2	SC1 for $\frac{69}{80}$			
	(c)	16, 4		2	B1 for each correct value			
	(d)	18.0623 18.1 wy	5 rot to 3sf or better or vw	3	M1 for Σmf for <i>m</i> as mid values of 5, 12.5, 22. 35 and 45 (= 1445) and M1 dep for $\Sigma mf \div 80$, dep on M1 earned			
	(e) Correct widths with no gaps 2^{nd} block w = 5, fd = 2.4 3^{rd} block w = 15 fd = 1.2 4^{th} block w = 10 and fd = 1.6 5^{th} block w = 10 and fd = 0.4			1 1 1FT 1FT	Strict FT from <i>their</i> (c) Strict FT from <i>their</i> (c) After 0 scored for blocks, SC1 for 4 correct fds soi by correct heights			
10	(a) (i)	4.5 or 4	1/2	3	M2 for a complete correct method or M1 for one correct step at any stage.			
	(ii) (<i>x</i>		x – 1)	M2	M1 for (<i>x</i> + <i>a</i>)(<i>x</i>)(<i>x</i> + <i>a</i>)(<i>x</i> + <i>a</i>)(<i>x</i> + <i>a</i>)(<i>x</i> + <i>a</i>)(<i>x</i>)(<i>x</i> + <i>a</i>)(<i>x</i>	(x+b) where $ab = 6$		
		1,6		A1FT		ets dep on M1 earne ed SC1 for 1, 6 as a		
	(iii)	6		4	B1 for $2(3x - 2$ and B1 for cor and M1 for cor equation witho better	of a bracket of their linear		
	(b)	<i>a</i> = 1/3	oe, <i>b</i> = 1/2 oe	6	6 B1 for any one of 1 = a + b + 1/6 oe 5 = 8a + 4b + 2/6 oe 14 = 27a + 9b + 3/6 oe 30 = 64a + 16b + 4/6 oe Or any other correct equation and B1 for another of the above equations and M1 for equating one coefficient or correct rearrangement to give <i>a</i> or <i>b</i> as su and M1 for subtracting to eliminate <i>a</i> or <i>b</i> or correct substitution for <i>their a</i> or their <i>b</i> A1 for <i>a</i> = 1/3 oe or <i>b</i> = 1/2 oe			