MNN. Firemed abers com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0581 MATHEMATICS

0581/42

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0581	42

Abbreviations

cao correct answer only cso correct solution only

dep dependent

ft follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

www without wrong working art anything rounding to soi seen or implied

Qu.	Answers	Mark	Part Marks
1	(a) (i) 5	2	M1 for $\frac{3 \times 15}{(5+3+1)}$
	(ii) 108	2	M1 for $60 \times \frac{9}{5}$ oe
	(b) Correct conversion of money $J \times 0.718$ or $A \div 0.718$	M1	Correct conversion of money soi by 146.83[1] rounded or truncated to 3sf or 134.26[1] rounded or truncated to 3 sf if done 1 st
	Correct equalising of weights e.g. $J \times \frac{2[0]}{3[0]} \qquad \text{or } A \times \frac{3[0]}{2[0]}$ or $J \div 3$ and $A \div 2$ or $J \div 30$ and $A \div 20$	M1	Correct equalising of weights or money Accept other methods that give a pair of comparable values for method and accuracy marks This mark can be implied by values seen correct to 3 sf or better
	97 to 98 or 201[.39] and Ann 48.9[4] and 48.2[0] and Ann or 68[.16] to 68.[2] and 67[.13] and Ann 4.88 to 4.9 and 4.82 and Ann or 6.8[1] to 6.82 and 6.7[1] and Ann	A2	The underlined values imply M1 for the money conversion Or A1 for 97 to 98 or 201[.39] or a correct pair of values with wrong/no conclusion
	(c) 302 Final answer	3	M1 for $60 \times 60 \times 4$ soi by 14400 or figs 6048 or figs 3024 and M1 for \div (1000 \times 20) soi Answer 302.4 implies M2
	(d) 13.6[0]	3	M2 for $\frac{15.3[0]}{1.125}$ oe or M1 for 15.3[0] associated with 112.5%
	(e) 12	1	

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0581	42

	_		
2	(a) (i) $[\cos A =] \frac{32^2 + 64^2 - 43^2}{2 \times 32 \times 64}$	M2	M1 for correct implicit version $43^2 = 32^2 + 64^2 - 2 \times 32 \times 64\cos A$
	37.00[]	A2	A1 for $\frac{3271}{4096}$ or 0.798 to 0.799
	(ii) 616 or 616.2 to 616.4	2	M1 for $\frac{1}{2} \times 32 \times 64 \times \sin 37$ oe
	(b) $[\sin ADC =] \frac{64\sin 55}{70}$ soi by 48.49rounded or truncated or $x^2 - (73.41 \text{ to } 73.42) x - 804 [= 0]$	M2	M1 for correct implicit version of sine rule or cosine rule with x
	$\frac{70\sin(125 - their 48.5)}{\sin 55}$ or $64^2 + 70^2 - 2 \times 64 \times 70\cos(125 - their 48.5)$	M2	M1 for implicit sine rule or cosine rule or for one error in quadratic solution
	or solving their 3 term quadratic equation		Ignore negative solutions
	228 or 228.0 to 228.1 www	A2	A1 for 83.0 to 83.1
3	(a) (i) $2(2x+1)(x-5)$ final answer	3	B1 for $2(2x^2 - 9x - 5)$ and B1 for $(2x + 1)(x - 5)$ or SC2 for expansion of brackets gives 3 correct terms e.g. $(2x + 1)(2x - 10)$ or $(4x + 2)(x - 5)$ or SC1 for expansion of brackets gives 2 correct terms e.g. $(2x - 1)(2x + 10)$ or $(4x - 2)(x - 4)$
	(ii) $-1/2$ oe, 5	1ft	Correct or ft their 2 brackets
	(b) $\frac{[]7 \pm \sqrt{([-]7)^2 - 4(2)(-10)}}{2(2)}$	B2	B1 for $\sqrt{([-]7)^2 - 4(2)(-10)}$ [= $\sqrt{129}$]
			If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$,
			B1 for -7 and 2(2) or better
	-1.09 , 4.59 final answers	B1B1	If B0 , SC1 for –1.1 and 4.6 as final answers or –1.089 and 4.589 as final answers
			or – 1.09 and 4.59 seen

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0581	42

			10 10	2	M1 for ((2) 2/2 1)1 11
	(c)	${(3r)}$	$\frac{-10}{-1)(x-2)}$ or $\frac{-10}{3x^2-7x+2}$	3	M1 for $6(x-2)-2(3x-1)$ or better.
		,	, ,		Allow recovery after missing bracket[s]
		as fi	nal answer		and B1 for $(3x-1)(x-2)$ as common denominator seen (may be as two fractions)
					denominator seen (may be as two fractions)
4	(a)	(i)	148	2	B1 for tangent/radius = 90° seen.
					May be on diagram
		(ii)	74	1ft	ft their (a)(i) $\div 2$ dep on (a)(i) < 180
		(iii)	21	2	M1 for 360 – 90 – 143 – 32 – <i>their</i> (ii) oe
		(111)	21	2	
					e.g. using quadrilateral AOCD
		(iv)	20.9 or 20.92	3	M2 for 6 tan 74 oe or explicit sine rule
					Or M1 for implicit version
	(b)	(i)	51	2	M1 for $ABC = 90^{\circ}$. May be on diagram.
		(!!\	5.0	2	M1 for 20 + 17 or 190 (72 + 4, -in 51)
		(ii)	30	2	M1 for 39 + 17 or 180 – (73 + their 51)
					or $[AXB=]$ 180 – (39 + 17)
		(iii)	Angle at centre twice oe angle at	1	
		()	circumference	-	
		(iv)	22	1	
		(**)	68.3 or 68.27 to 68.29	3	226
		(1)	08.3 01 08.27 10 08.29	3	Allow $\frac{326}{15}\pi$ as final answer
					M2 for $\frac{360-34}{360} \times 2\pi \times 12$
					or $2\pi \times 12 - \frac{34}{360} \times 2\pi \times 12$
					or $\pi \times 12 + \frac{180 - 34}{360} \times 2\pi \times 12$
					θ
					or M1 for use of $\frac{\theta}{360} \times 2\pi \times 12$
					for $\theta \neq$ multiples of 90°
					101 0 + illulupies 01 90

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0581	42

_	(2) 20 (0 100 140 180 220	N/I	At least 5 compet wild realizes so:
5	(a) 20, 60, 100, 140, 180, 220	M1	At least 5 correct mid - values soi
	$(6 \times 20 + 10 \times 60 + 28 \times 100 + 76 \times 140 + 22 \times 180 + 16 \times 220)$	M1	$\sum fm$ where m is in the correct interval, allow either end of interval as m
	(= 21640)		allow one further slip
	÷ 158 or $\sum f$	M1	Depend on second method
	137 or 136.9 to 137.0	A1	SC2 for 137 or better ww
	(b) (i) 16, 126	1, 1	
	(ii) rectangular bar of height 0.2 rectangular bar of height 1.05	1ft 1ft	Strict ft from <i>their</i> 16 Strict ft from <i>their</i> 126
	correct widths of 80 and 120 with no gaps	1	
	(c) 135	3	M2 for $\frac{15 \times 136 + 3 \times 130}{15 + 3}$
			or M1 for 15×136 and 3×130
			[2040] and [390]
6	(a) 5.83 or 5.830 to 5.831	2	Allow $\sqrt{34}$ as final answer M1 for $(3^2 + ([-]5)^2)$
	(b) (i) Vector drawn from <i>P</i> to <i>Q</i> at (14, 3)	1	Must have arrow in correct direction
	(ii) Points at (8, 11) and (13, 14)	1, 1	SC1 for points at (8, 5) and (3, 2)
	(c) $3a - 2b$	2	M1 for $\mathbf{a} - 3\mathbf{b} + 2\mathbf{a} + \mathbf{b}$ or $\overrightarrow{CD} + \overrightarrow{DE}$ oe Allow mixtures of vector notation.
			The state of the s
	(d) $\begin{pmatrix} 7 \\ -6 \end{pmatrix}$	1	
		1	
	(e) (i) $\mathbf{b} - \mathbf{c}$ oe	1	Allow unsimplified

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0581	42

			$MX = MB + BX$ $\pm \frac{1}{4} \text{ or } \pm \frac{3}{4} \text{ used}$ $-\frac{1}{4}\mathbf{b} \text{ or } \frac{1}{4} (3\mathbf{c} - \mathbf{b}) \text{ or } \frac{3\mathbf{c}}{4} - \frac{\mathbf{b}}{4}$	M1 M1 A2	Any order for the M marks For a correct route A1 for $\frac{1}{2}$ b + $\frac{3}{4}$ (c - b) oe Any correct unsimplified After 0 scored SC2 for $\frac{2}{3}$ c - $\frac{1}{6}$ b
7	(a)	(i)	$x \ge 5$ $y \le 8$ $x + y \le 14$		B1 for each correct inequality Penalise the first occurrence only when strict inequalities used
	(b)	(ii) (i)	$y \ge \frac{1}{2}x$ oe x = 5 ruled y = 8 ruled x + y = 14 ruled $y = \frac{1}{2}x$ ruled region indicated	4 1 1 1 1 1dep	Each line long enough to be boundary of region Check at intercepts Check at $(10, 5)$ Dependent on 4 lines correct M1 for $20 \times x + 45 \times y$ where x and y are integers and (x, y) is in their quadrilateral
		(ii)	6, 8	1	In correct order
8	(a)	(i) (ii)	Tangent drawn at $x = 2.5$ 1.55 to 2.2	1 2dep	reasonable tangent at correct point, no daylight, or chord, crossing <i>x</i> -axis between 1.7, 2.0 when extended if necessary Dependent on correct tangent or close attempt at tangent at <i>x</i> = 2.5 M1dep attempts <i>y</i> step / <i>x</i> step with correct scales
	(b)	1.42	2 to 1.45 and 2.8 to 2.82	1, 1	
	(c)	(i)	4.4, 2.5, 1.5	2	B1 for 2 correct values

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0581	42

	(ii) 6 correct points plotted	P2ft	P1ft for 4 or 5 correct plots
	curve through all 6 points and correct shape	C1	Smooth curve but last 3 points may be ruled. In absence of plot[s], allow curve to imply plot[s]
	(iii) 0.75 to 0.9	1	Solutions may be in any order
	1.6 to 1.7	1	
	2.6 to 2.7	1	
9	(a) (i) F S 5 11 7	2	B1 for 2 outside of circles in diagram or all three of 5, 11, 7 correctly placed
	(ii) 9	1ft	ft their 2 + their 7
	(iii) 14	1	
	(iv) $\frac{11}{25}$	1ft	ft their 11 from diagram / 25
	(v) $\frac{42}{600}$ oe $=\frac{7}{100}$	2ft	isw incorrect cancelling ft <i>their</i> 7 from diagram for numerator their 7 their (7 – 1)
			M1 for $\frac{their7}{25} \times \frac{their(7-1)}{24}$ After 0 scored, SC1 for $\frac{their7}{25} \times \frac{their(7)}{25}$

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0581	42

	(b) (i)	F 5 4 G 12 7 5 4	4	B1 for any correct diagram with blanks or zeros where needed and labelled unambiguously B1 for 4 in correct place B1 for 12 in correct place B1 for 5 and 7 in correct place
	(ii)	28	1ft	Correct or ft from their diagram
10	(a) (i)	20	1	
	(ii)	n-4 oe $n+4$ oe		Accept unsimplified
		n+6 oe	2	B1 for two correct
	(iii)	(n-4)(n+4)-(n-6)(n+6)	M1	ft from their algebraic expressions can be implied by $n^2 - 4n + 4n - 16 - (n^2 - 6n + 6n - 36)$ or $n^2 - 16 - (n^2 - 36)$
		$n^2 - 4n + 4n - 16 - (n^2 - 6n + 6n - 36)$ or better		Must have a line of algebra
		20	E 1	With no errors or omission of brackets
	(b) (i)	24	1	

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0581	42

(ii) $(n-5)(n+5) - (n-7)(n+7)$ isw or $n^2 - 25 - (n^2 - 49)$ isw or $n^2 - 25 - n^2 + 49$ isw	2	M1 for $n - 5$, $n + 5$, $n - 7$, $n + 7$ seen
(c) $(11 \times 23) - (9 \times 25)$ 253 - 225 [= 28]	E1	Allow algebraic solution from $(n-6)(n+6) - (n-8)(n+8)$
(d) 4 <i>t</i> oe	1	Accept unsimplified e.g. $n^2 - (t-1)^2 - [n^2 - (t+1)^2]$
(e) $c = 28$ and $d = 30$	1 1	