## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

**International General Certificate of Secondary Education** 

## MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

## 0581 MATHEMATICS

0581/43

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



| Page 2 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE – October/November 2010  |          | 43    |

## **Abbreviations**

cao correct answer only cso correct solution only

dep dependent

ft follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

www without wrong working art anything rounding to soi seen or implied

| Qu. | Answers                                                                                                                                                                                                              | Mark                       | Part Marks                                                                                                                                                                                                                                                             |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | (a) $200 \div 10 \times 3$ oe $200 \div 10 \times 2$ oe                                                                                                                                                              | M1<br>M1                   |                                                                                                                                                                                                                                                                        |
|     | <b>(b)</b> 65                                                                                                                                                                                                        | 2                          | <b>M1</b> for $\frac{39}{60} \times 100$ oe 35 is <b>M0</b>                                                                                                                                                                                                            |
|     | (c) 46                                                                                                                                                                                                               | 3                          | <b>M2</b> for 36.80 ÷ 0.8 oe or <b>M1</b> for 80% = 36.80 oe                                                                                                                                                                                                           |
|     | (d) 0.6(0)                                                                                                                                                                                                           | 3                          | M2 for $5(x + 12) + 2x = 64.2$ oe<br>or $(64.2 - 5 \times 12) \div 7$<br>or $5x + 2(x - 12) = 64.2$ oe or $(64.2 + 2 \times 12) \div 7$<br>or M1 for $y = x + 12$ and $5y + 2x = 64.2$<br>or $y = x - 12$ and $5x + 2y = 64.2$<br>After M0, SC1 for $k(x \pm 12)$ seen |
| 2   | (a) $(\cos Q =) \frac{4^2 + 4.5^2 - 7^2}{2 \times 4 \times 4.5}$ o.e. 110.74                                                                                                                                         | M2<br>E2                   | M1 for $7^2 = 4^2 + 4.5^2 - 2 \times 4 \times 4.5 \times \cos(Q)$<br>If <b>E0</b> then A1 for $-0.354(1)$                                                                                                                                                              |
|     | <b>(b)</b> $(RS =) \frac{7 \sin 40}{\sin 85}$<br>4.516                                                                                                                                                               | M2<br>E1                   | M1 for $\frac{RS}{\sin 40} = \frac{7}{\sin 85}$ o.e.<br>Can be implied by second M                                                                                                                                                                                     |
|     | (c) Angle $R = 55^{\circ}$<br>$0.5 \times 7 \times 4.52 \times \sin(\text{their } 55)$ o.e.<br>$0.5 \times 4 \times 4.5 \times \sin 110.7$ o.e.<br>Triangle $PRS + \text{Triangle } PQR$<br>$21.4 \ (21.36 - 21.42)$ | B1<br>M1<br>M1<br>M1<br>A1 | (May be seen on diagram)<br>(12.95 – 13.0) their 55 is (180 – 40 – 85)<br>(8.418 – 8.42) (s = 7.75)<br>Dependent on M1, M1<br>www 5                                                                                                                                    |

| Page 3 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE – October/November 2010  | 0581     | 43    |

| 3 | (a) $5x^2 - x$ or $x(5x - 1)$                                                                 | 2      | M1 for $x^2 + 3x$ or $4x^2 - 4x$ correct                                                                                                                           |
|---|-----------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <b>(b)</b> $27x^9$                                                                            | 2      | <b>B1</b> for 27 or for $x^9$                                                                                                                                      |
|   | (c) (i) $7x^7(1+2x^7)$                                                                        | 2      | M1 for any correct partially factorised expression                                                                                                                 |
|   | (ii) $(y+w)(x+2a)$                                                                            | 2      | or $7x^{7}(1 +)$<br>M1 for $x(y + w) + 2a(y + w)$ or $y(x + 2a) + w(x + 2a)$                                                                                       |
|   | (iii) $(2x+7)(2x-7)$                                                                          | 1      |                                                                                                                                                                    |
|   | (d) $\frac{-5 \pm \sqrt{5^2 - 4(2)(1)}}{2(2)}$ oe                                             | 2      | In square root <b>B1</b> for $5^2 - 4(2)(1)$ or better (17)  If in form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$ <b>B1</b> for $p = -5$ and $r = 2(2)$ |
|   | -2.28<br>-0.22                                                                                | 1<br>1 | SC1 for -2.3 or -2.281 to -2.280 and -0.2 or -0.220 to -0.219                                                                                                      |
| 4 | (a) (i) $\binom{25}{43}$                                                                      | 1 1    | If 0, 0 then <b>SC1</b> for 25 and 43 seen                                                                                                                         |
|   | (ii) (16)                                                                                     | 2      | <b>B1</b> for 16 without brackets                                                                                                                                  |
|   | (iii) $\frac{1}{-2} \begin{pmatrix} 5 & -3 \\ -4 & 2 \end{pmatrix}$ isw                       | 2      | <b>B1</b> for determinant = -2                                                                                                                                     |
|   | $\operatorname{or}\begin{pmatrix} -\frac{5}{2} & \frac{3}{2} \\ 2 & -1 \end{pmatrix}$         |        | or <b>B1</b> for $k \begin{pmatrix} 5 & -3 \\ -4 & 2 \end{pmatrix}$                                                                                                |
|   | (b) Reflection only                                                                           | 1      | If more than one transformation given – no                                                                                                                         |
|   | <i>x</i> -axis oe                                                                             | 1      | marks available independent                                                                                                                                        |
|   | $\begin{array}{c c} \textbf{(c)} & \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \end{array}$ | 2      | B1 for one correct column                                                                                                                                          |

| Page 4 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE – October/November 2010  |          | 43    |

|   |                                                                                                    | 1                |                                                                                                                                                                           |
|---|----------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | (a) (i) Accurate perpendicular bisector, with 2 pairs of arcs, of CD.                              | 2                | SC1 if accurate without arcs.                                                                                                                                             |
|   | (ii) Accurate angle bisector, with two pairs of arcs, of angle A.                                  | 2                | SC1 if accurate without arcs.                                                                                                                                             |
|   | <b>(b)</b> SHOP written in correct region                                                          | S1               | Dependent on at least SC1 in (i) and (ii) and intersection                                                                                                                |
|   | (c) (i) Arc, centre B, radius 5cm,                                                                 | 1                | Allow good freehand                                                                                                                                                       |
|   | reaching across <i>ABCD</i> .  (ii) Area outside their arc centre <i>B</i> and outside SHOP shaded | 1ft              | dep on S1                                                                                                                                                                 |
| 6 |                                                                                                    |                  | Accept fraction, %, dec equivalents (3sf or better) throughout but not ratio or words i.s.w. incorrect cancelling/conversion to other forms  Pen -1 once for 2 sf answers |
|   | (a) (i) 33                                                                                         | 1                |                                                                                                                                                                           |
|   | (ii) $\frac{243}{3125}$ (0.07776)                                                                  | 2                | Accept 0.0778. <b>M1</b> for $\left(\frac{3}{5}\right)^5$ oe                                                                                                              |
|   | <b>(b) (i)</b> $\frac{2}{5}, \frac{3}{4}, \frac{1}{8}, \frac{7}{8}$                                | 3                | <b>B1</b> for $\frac{2}{5}$ and $\frac{3}{4}$ <b>B1</b> for $\frac{1}{8}$ <b>B1</b> for $\frac{7}{8}$                                                                     |
|   | (ii) $\frac{1}{20}$ (0.05) cao                                                                     | 2                | M1 for their $\frac{2}{5}$ × their $\frac{1}{8}$                                                                                                                          |
|   | (iii) $\frac{1}{5}$ (0.2) ft                                                                       | 2ft              | ft $\frac{3}{20}$ + their <b>(b)(ii)</b> or <b>M1</b> for $\frac{3}{5} \times \frac{1}{4}$                                                                                |
| 7 | (a) -5.4<br>3.7                                                                                    | 1 1              |                                                                                                                                                                           |
|   | <b>(b)</b> 8 points correctly plotted ft                                                           | Р3               | P3ft their table.                                                                                                                                                         |
|   | Smooth cubic curve through all 8 points                                                            | C1               | <b>P2ft</b> for 6 or 7 points. <b>P1ft</b> for 4 or 5 points Only ft points if shape not affected.                                                                        |
|   | (c) -2, -4, 4                                                                                      | 2                | B1 for 2 correct                                                                                                                                                          |
|   | (d) 7 points correctly plotted ft Two separate smooth branches of rectangular hyperbola            | P2<br>C1         | P2ft P1ft for 5 or 6 points Must pass through all 7 points, only ft if shape not affected and no contact with either axis.                                                |
|   | (e) (i) $-2.9 \le x \le -2.8$<br>$2.05 \le x \le 2.15$<br>(ii) $a = 10$<br>b = -40                 | 1<br>1<br>1<br>1 | Not with y coordinates                                                                                                                                                    |

| Page 5 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE – October/November 2010  | 0581     | 43    |

| (iii) 144 (144 – 144.4) ft  (b) (i) 311 (310.8 – 311.1)  (b) (i) 311 (310.8 – 311.1)  (ii) 3.50 (3.496 to 3.50) ft  (iii) $\frac{9}{5}$ (ii) $\frac{9}{5}$ (iii) $\frac{4}{7}$ (iii) $\frac{1}{2}$ (t – u) oe  (iii) $\frac{1}{2}$ (t – u) oe  (iii) $\frac{3}{2}$ u + $\frac{1}{2}$ t oe ft  2ft ft 15 × 6 × 6 – their (a)(i) M1 for 6 × 6 × 15 oe  (M1 for 2 × $\pi$ × 3² and M1 (independent) for $\pi$ × 6 × 12 and M1 for $\pi$ × 3², M1 (dependent on M3) for adding. (99 $\pi$ implies M4)  (i) (1) (1) (2) (1) (2) (1) (3) (10.25 – 10.30)  (ii) $\frac{9}{5}$ 1 If 0, SC1 for $\overline{CB} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$ seen  1 BA not indicated as a vector is not enough.  (iii) $\frac{1}{2}$ (their $\overline{BA} + \overline{AD} + \overline{DC}$ ) or equivalent correct route for $\overline{BM}$ , along obtainable vector in terms of t and u or M1 for correct unsimplified answer  (iii) $\frac{3}{2}$ u + $\frac{1}{2}$ t oe ft  (iv) 10.4 (ii) simplified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                             |     |                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------|
| (ii) $3.13 (3.125 - 3.128)$ ft  (iii) $3.13 (3.125 - 3.128)$ ft  (iii) $144 (144 - 144.4)$ ft  (b) (i) $311 (310.8 - 311.1)$ (ii) $3.50 (3.496 \text{ to } 3.50)$ ft  (iii) $3.50 (3.496 \text{ to } 3.50)$ ft  (ii) $47$ (iii) $8A \text{ or } -AB$ (iv) $10.3 (10.29 - 10.30)$ (b) (i) $2\mathbf{u}$ (ii) $\frac{1}{2}(\mathbf{t} - \mathbf{u})$ oe  (iii) $\frac{3}{2}\mathbf{u} + \frac{1}{2}\mathbf{t}$ oe ft  (iii) $3.0 (3.125 - 3.128)$ ft  (iii) $3.10 (3.125 - 3.128)$ ft  (iv) $1.100 (3.100 - 3.125 - 3.128)$ ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 313 or 3125 - 3128 ft their (i) × 7.9 so ib by figs 310 or 3125 ft their (i) × 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 | (a) (i) 396 (395.6 – 396)                                   | 4   | $\pi \times 3^2 \times 12$ ,                                                                                                       |
| (ii) $3.50 (3.496 \text{ to } 3.50) \text{ ft}$ 2ft $ \begin{array}{c} \pi \times 6 \times 12 \text{ and M1 for } \pi \times 3^2, \\ \mathbf{M1} \text{ (dependent on M3) for adding.} \\ (99\pi \text{ implies M4}) \\ \text{ft their } (\mathbf{b})(\mathbf{i}) \times 0.01125 \\ \mathbf{M1} \text{ for their } (\mathbf{b})(\mathbf{j}) \div 8 \text{ and } \times \text{ figs } 9 \\ \text{implied by figs } 3496 \text{ to } 350 \end{array} $ 9  (a) (i) $\begin{pmatrix} 9 \\ 5 \end{pmatrix}$ 1  (ii) $\frac{4}{7}$ (iii) $\overline{BA} \text{ or } -\overline{AB}$ (iv) $10.3 (10.29 - 10.30)$ 1  (b) (i) $2\mathbf{u}$ (ii) $\frac{1}{2}(\mathbf{t} - \mathbf{u})$ oe  1  2  M1 for $(\mathbf{their } 9)^2 + (\mathbf{their } 5)^2$ M1 for $(\mathbf{their } \overline{BA} + \overline{AD} + \overline{DC})$ or equivalen correct route for $\overline{BM}$ , along obtainable vector in terms of $\mathbf{t}$ and $\mathbf{u}$ or $\mathbf{M1}$ for correct unsimplified answer  (iii) $\frac{3}{2}\mathbf{u} + \frac{1}{2}\mathbf{t}$ oe ft  2ft ft their (i) + their (ii) simplified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                                             |     | 126 $\pi$ implies M3<br>ft their (i) × 7.9 ÷ 1000 .<br>M1 for × 7.9 soi by figs 313 or 3125 – 3128<br>ft 15 × 6 × 6 – their (a)(i) |
| (ii) $3.50 (3.496 \text{ to } 3.50) \text{ ft}$ 2ft $M1 \text{ (dependent on M3) for adding.}$ $(99\pi \text{ implies M4})$ $(99\pi $ |   | <b>(b) (i)</b> 311 (310.8 – 311.1)                          | 5   |                                                                                                                                    |
| (ii) $\begin{pmatrix} 4 \\ 7 \end{pmatrix}$ (iii) $\overrightarrow{BA}$ or $-\overrightarrow{AB}$ (iv) 10.3 (10.29 – 10.30)  (b) (i) 2u (ii) $\frac{1}{2}(\mathbf{t} - \mathbf{u})$ oe  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | (ii) 3.50 (3.496 to 3.50) ft                                | 2ft | M1 (dependent on M3) for adding.<br>(99 $\pi$ implies M4)<br>ft their (b)(i) × 0.01125<br>M1 for their (b)(i) ÷ 8 and × figs 9     |
| (ii) $\begin{pmatrix} 4 \\ 7 \end{pmatrix}$ (iii) $\overrightarrow{BA}$ or $-\overrightarrow{AB}$ (iv) 10.3 (10.29 – 10.30)  (b) (i) 2u (ii) $\frac{1}{2}(\mathbf{t} - \mathbf{u})$ oe  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9 | (a) (i) $\binom{9}{5}$                                      | 1   |                                                                                                                                    |
| (iv) $10.3 (10.29 - 10.30)$ 2 M1 for $(\text{their } 9)^2 + (\text{their } 5)^2$ (b) (i) $2\mathbf{u}$ (ii) $\frac{1}{2}(\mathbf{t} - \mathbf{u})$ oe  2 M1 for $\frac{1}{2}(\text{their } \overrightarrow{BA} + \overrightarrow{AD} + \overrightarrow{DC})$ or equivalen correct route for $\overrightarrow{BM}$ , along obtainable vector in terms of $\mathbf{t}$ and $\mathbf{u}$ or M1 for correct unsimplified answer  (iii) $\frac{3}{2}\mathbf{u} + \frac{1}{2}\mathbf{t}$ oe ft  2ft ft their (i) + their (ii) simplified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | (ii) $\begin{pmatrix} 4 \\ 7 \end{pmatrix}$                 |     | If 0, <b>SC1</b> for $\overrightarrow{CB} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$ seen                                            |
| (iv) $10.3 (10.29 - 10.30)$ 2 M1 for $(\text{their } 9)^2 + (\text{their } 5)^2$ (b) (i) $2\mathbf{u}$ (ii) $\frac{1}{2}(\mathbf{t} - \mathbf{u})$ oe  2 M1 for $\frac{1}{2}(\text{their } \overrightarrow{BA} + \overrightarrow{AD} + \overrightarrow{DC})$ or equivalen correct route for $\overrightarrow{BM}$ , along obtainable vector in terms of $\mathbf{t}$ and $\mathbf{u}$ or M1 for correct unsimplified answer  (iii) $\frac{3}{2}\mathbf{u} + \frac{1}{2}\mathbf{t}$ oe ft  2ft ft their (i) + their (ii) simplified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | (iii) $\overrightarrow{BA}$ or $-\overrightarrow{AB}$       | 1   | BA not indicated as a vector is not enough.                                                                                        |
| (ii) $\frac{1}{2}(\mathbf{t} - \mathbf{u})$ oe $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                                             | 2   |                                                                                                                                    |
| correct route for $\overrightarrow{BM}$ , along obtainable vector in terms of $\mathbf{t}$ and $\mathbf{u}$ or $\mathbf{M1}$ for correct unsimplified answer  (iii) $\frac{3}{2}\mathbf{u} + \frac{1}{2}\mathbf{t}$ oe ft  2ft ft their (i) + their (ii) simplified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | (b) (i) 2u                                                  | 1   |                                                                                                                                    |
| in terms of $\mathbf{t}$ and $\mathbf{u}$ or $\mathbf{M1}$ for correct unsimplified answer  (iii) $\frac{3}{2}\mathbf{u} + \frac{1}{2}\mathbf{t}$ oe ft  2ft ft their (i) + their (ii) simplified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | (ii) $\frac{1}{2}(\mathbf{t} - \mathbf{u})$ oe              | 2   | <b>M1</b> for $\frac{1}{2}$ (their $\overrightarrow{BA} + \overrightarrow{AD} + \overrightarrow{DC}$ ) or equivalent               |
| $\mathbf{M1}$ for correct (or <b>ft</b> ) unsimplified (i) + (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | (iii) $\frac{3}{2}\mathbf{u} + \frac{1}{2}\mathbf{t}$ oe ft | 2ft | or M1 for correct unsimplified answer  ft their (i) + their (ii) simplified  or t + u - their (b)(ii) simplified                   |

| Page 6 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | IGCSE – October/November 2010  | 0581     | 43    |

| 10 | (a) 7, 8, 8, 10, 11, 16<br>and 8, 8, 8, 10, 10, 16                                                                                                                                              | 5 | Mark answer spaces only or clearly indicated lists. Allow numbers in any order but must be lists of 6 integers <b>B4</b> for either correct list  If not <b>B4</b> then <b>B1</b> for a series with mode 8 and <b>B1</b> for a series with median 9 and <b>B1</b> for a series with sum 60                          |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (b) (i) $(30 \times 65 + 35 \times 85 + 40 \times 95 + 40 \times 110 + 15 \times 135) \div 160$<br>94.7 $(94.68 - 94.69)$<br>(ii) Heights of 4, 2, 0.5 with correct interval widths             | 4 | M1 for mid-values soi (allow 1 error/omission) and M1 for use of ∑ fx with x in correct interval including both boundaries allow one further error/omission and M1 (dependent on second M) for ÷ 160 www 4  B3 for 2 correct or B2 for 1 correct or B1 for all three freq. densities correct but no/incorrect graph |
| 11 | (a) 30 42<br>42 56<br>71 97<br>(b) (i) 2550                                                                                                                                                     | 1 | B3 for 2 correct rows<br>or B2 for 1 correct row<br>or B1 for any term in column 5 correct                                                                                                                                                                                                                          |
|    | (ii) 30                                                                                                                                                                                         | 1 |                                                                                                                                                                                                                                                                                                                     |
|    | (c) $(n+1)(n+2)$ oe final ans<br>(d) (i) $2n^2 + pn + 1 = t$<br>Uses a value of $n$ up to 6 and a matching $t$ from the table e.g. puts $n = 3$ and $t = 31$<br>$2 \times 3^2 + 3p + 1 = 31$ M1 | 2 | Correct solution shown with 1 intermediate step to $p = 4$ <b>E1</b>                                                                                                                                                                                                                                                |
|    | Use $p = 4$ to get $2n^2 + 4n + 1 = 31$<br>and simplifies to 3 term eqn M1                                                                                                                      |   | Solve correctly to get $n = 3$ <b>E1</b>                                                                                                                                                                                                                                                                            |
|    | OR both $2 \times 9 + 4 \times 3 + 1 (= 31)$ with one part evaluated OR                                                                                                                         |   | Conclusion e.g. 31 = 31 <b>E1</b>                                                                                                                                                                                                                                                                                   |
|    | n(n+1) + (n+1)(n+2) - 1<br>or better M1                                                                                                                                                         | 1 | Correct simplification to $2n^2 + 4n + 1$ <b>E1</b>                                                                                                                                                                                                                                                                 |
|    | (iii) 12                                                                                                                                                                                        | 3 | M1 for $2n^2 + 4n + 1 = 337$<br>and M1 for $(n - 12)(n + 14)$ or correct expression<br>for <i>n</i> using formula                                                                                                                                                                                                   |
|    | (e) $L = A + D - 1$ oe                                                                                                                                                                          | 1 |                                                                                                                                                                                                                                                                                                                     |