CAMBRIDGE

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the November 2003 question papers

0580/0581 MATHEMATICS						
0580/01, 0581/01	Paper 1 (Core), maximum raw mark 56					
0580/02, 0581/02	Paper 2 (Extended), maximum raw mark 70					
0580/03, 0581/03	Paper 3 (Core), maximum raw mark 104					
0580/04, 0581/04	Paper 4 (Extended), maximum raw mark 130					

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2003 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0580/0581 (Mathematics) in the November 2003 examination.

	maximum	minimum mark required for grade:					
	mark available	А	С	Е	F		
Component 1	56	-	46	35	28		
Component 2	70	51	28	16	-		
Component 3	104	-	68	44	38		
Component 4	130	101	59	36	-		

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

Notes	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581

TYPES OF MARK

Most of the marks (those without prefixes, and 'B' marks) are given for accurate results, drawings or statements.

- **M** marks are given for a correct method.
- **B** marks are given for a correct statement or step.
- A marks are given for an accurate answer following a correct method.

ABBREVIATIONS

a.r.t.	Anything rounding to
b.o.d.	Benefit of the doubt has been given to the candidate
c.a.o.	Correct answer only (i.e. no 'follow through')
e.e.o.	Each error or omission
o.e.	Or equivalent
SC	Special case
s.o.i.	Seen or implied
ww	Without working
www	Without wrong working
	Work followed through after an error: no further error made
	Work followed through and another error found

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 56

SYLLABUS/COMPONENT: 0580/01, 0581/01

MATHEMATICS

Paper 1 (Core)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581	1

Que: Nun	stion nber	Mark Scl	neme	Details	Part Mark
1		400 (grams)	1		1
2		(\$)2.7(0)	2	M1 for $\frac{15}{100} \times 18$ o.e.	2
				SC1 for $\frac{85}{100} \times 18 = 15.3$	
3	(a)	$\frac{2}{5}$	1	Accept equivalent fractions, decimals, percentages (with sign)	2
	(b)	0	1	accept $\frac{0}{5}$, $\frac{0}{k}$ do not accept,	
4	(a)	126°	1		
	(b)	40(%)	2	M1 for $\frac{144}{360} \times 100$ o.e.	3
5		1.71(01)	2	M1 for 5 sin 20° or 5 cos70° or 1.7	2
6		6 or $\frac{6}{1}$	2	M1 for $\frac{60}{10}$, $\frac{1}{\frac{1}{6}}$, $\frac{1}{\frac{10}{60}}$	2
7		144°	3	M2 for $\frac{(2 \times 10 - 4) \times 90}{10}$ or	3
				$\frac{(10-2)\times 180}{10} \text{ or} \\ 180 - \frac{360}{10}.$	
				After 0, SC1 for answer 36°	
8		1250 ≤ r.l. < 1350	1 + 1	SC1 if reversed	2
9	(a)	10x ² – 15xy	2	B1 for one term correct	
	(b)	6x (x + 2)	2	M1 for $6(x^2 + 2x)$ or $x(6x + 12)$ or $2(3x^2 + 6x)$ or $2x(3x + 6)$ or $3(2x^2 + 4x)$ or $3x(2x + 4)$	4
10	(a)	87°	1		
	(b)	28°	1		
	(c)	62° √	1	f.t. is (90 – y)	3

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581	1

11			1	Lines may be freehand but must go completely through the shape	
		Any line through the centre	1		3
12		x = 4, y = 12	3	 M1 for attempting to eliminate one unknown by a correct method A1 for one correct value (x or y) 	3
13	(a)	(i) 2.4096	1		
		(ii) 2.41 √	1	f.t. from (i)	4
	(b)	19.3 or 19.32(16)	2	B1 for 2.68 seen or implied by 19.2	•
14	(a)	Monday, Tuesday and Saturday	1	All three and no extras	
	(b)	-20	3	B1 for −14 seen + M1 for (their −14) ÷ 7	4
15	(a)	(i) 0.28	1		
		(ii) 0.275	1		
		(iii) 0.2857 or 0.286	1		4
	(b)	$\frac{275}{1000}, \frac{2}{28\%}, \frac{2}{7}$ or equivalent $$	1	f.t. from (a)	
16	(a)	4.58(m)	2	M1 for $\sqrt{5^2 - 2^2}$ s.o.i. e.g. $\sqrt{21}$	Α
	(b)	66.40 or 66.30 – 66.450	2	M1 for $\cos^{-1}\frac{2}{5}$ o.e. incl $$	4

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581	1

17	(a)	3	1	10 ⁸ etc. penalise once only	
	(b)	-4	1	accept –04	
	(c)	0	1		4
	(d)	-2	1		
18	(a)	0.4 or 2.6	2	B1 for one correct SC1 if (0.4,0) (2.6,0)	
	(b)	(i) 0(ii) Correct line from x = -1 to	1 1	Must be ruled	
		x = 4			6
	(c)	(0,1), (4,5) √	2	B1 for one correct f.t. from (b) (ii)	

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 70

SYLLABUS/COMPONENT: 0580/02, 0581/02

MATHEMATICS

Paper 2 (Extended)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581	2

1	0.5 or $\frac{1}{2}$ c.a.o.	1	
2	(-)4504	1	Allow (-)4500
3	(a) 121 (b) (n + 1) ²	1 1	Allow 49, 64, 81, 100, 121 n ² + 2n + 1
4	3/2500, 1/8, 0.00126	2*	M1 for all 3 evaluated as decimals (or fractions or percentages or stand. form) SC1 reversed order
5	(a) -1, $\sqrt{36}$ (b) $\sqrt{2}$, $\sqrt{30}$	1 1	Allow –1, ±6 SC1 (a) –1 and (b) $\sqrt{36}$, $\sqrt{2}$, $\sqrt{30}$
6	I = mr/5	2*	M1 for $\frac{240 \times r \times m}{100 (\times 12)}$ o.e.
7	66.7	2	M1 for $\frac{2.4}{3.6} \times 100$ o.e.
8	(a) -1 (b) 5k	1 1	
9	(a) 32000 (b) 254 <u>50</u> 255 <u>50</u>	1 1, 1	SC1 both correct and reversed
10	11.5(2)	3*	M1 F = kv^2 M1 k = $18/40^2$ or better
11	(a) 3110	2*	M1 for 1936 ÷ 0.623 or 1936 x 1.61 Allow 3107.54, 3107.5, 3108 or 3107.3 SC1 3107
	(b) 322	1 √	1000000 ÷ (a)
12	(a) 45, 225 (b) 157.5	1, 1 1	Allow 158
13	(a) 5.5 or 5½ (b) 21.5	1 2*	M1 172 ÷ 8
14	(a) $\frac{x+3}{x(x+1)}$	3*	M1 $3(x + 1) - 2x$ M1 denominator $x(x + 1)$
	(b) -3	1 √	

* indicates that it is necessary to look in the working following a wrong answer

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581	2

Γ

15	(a)	angle bisector of angle P	2*	M1 correct construction method $A1 \pm 1^{\circ}$					
	(b)	radius from T or U	2*	SC1 for accurate line but no arcs M1 radius drawn, meets (a) and O labelled. A1 \pm 1°					
16	(a) (b)	A(2,0) B(0,-6) 6.32	1, 1 2*	SC1 correct and reversed M1 (AB ²) = " $(0 - 2)$ " ² + " $(-6 - 0)$ " ² from (a)					
	(c)	(1,-3)	1 √						
17	(a) (b)	20	1						
	(D) (C)	62	1						
	(d)	124	1						
	(e)	36	1 √	(b) – (c)					
18	(a)	5.8 x 10 ⁸	1						
	(b)	98	2*	M1 figs 58 \div figs 59 or figs 9830508					
	(c)	10200	2*	M1 figs 59 ÷ figs 58 x 10 ⁿ or $\frac{1}{(b)}$ x 10 ⁿ					
				n = 3 or 6					
19	(a)	-6	2	M1 1 – 2(7/2)					
	(b)	(i) 0.4	2	M1 $\frac{5x}{2}$ o.e., 2 - 4x = x or better					
		(ii) (0.4, 0.2)	1						
20	(a)	(i) $-\frac{2}{3}p + q$	2*	M1 use of AQ = $\pm \frac{2}{3}$ p \pm q or AO + OQ					
		$(II) - 7_4 q + p$	Ζ.	M1 use of BQ = $\pm \gamma_4 \mathbf{q} \pm \mathbf{p}$ or BO + OP					
	(b)	$^{1}/_{3}\mathbf{p} - ^{1}/_{2}\mathbf{q}$	2*	M1 - ¹ / ₄ q + ¹ / ₃ BP					
21	(a)	60x + 80y ≤1200 seen	1	Allow $0.6x + 0.8y \le 12$					
	(b)	$\mathbf{x} \ge \mathbf{y}$	1						
	(C)	line $y = x$ line through (20.0) and (0.15)	2*	M1 intention A1 accurate					
		shading out or R labelled	1	Dep. on both lines					
	(d)	20 c.a.o.	1	Allow 20, 0 or 20 + 0					
	Total 70								

TOTAL MARKS 70

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 104

SYLLABUS/COMPONENT: 0580/03, 0581/03

MATHEMATICS

Paper 3 (Core)

[Page	1	MATHEMAT	/lark Sc TCS – N	heme IOVEMBER 2003	Syllabus 0580/0581	Paper 3
L		I					
Q N	uestion umber	M	ark Scheme	Part Marks	Notes		Question Total
1	a)	24		1			
	<u>b)</u>	25 0	or 5 ⁻	1			
	<u>c)</u>	27 0	or 3°	1			
	d)	23		1			
		29		1			
	<u>e)</u>	26		1	condone 6, 26 or 6 x 26		
	<u>f)</u>	28 c	80	1			
	g)	21 a	ind 27	1	condone 21 x 27		8
2	a) i)	130	0 or 1 pm	1			
	ii)	103	0	1	allow 10.30, 10:30 etc		
	iii)	9		2	B1 for either 24 or 33 se	en	
					or M1 for 2 correct horizo	ontal lines	
					drawn or 24 and 33 marl	ked on axis	
	b) i)	4.35	5, 8.7(0)	2	B1 for one correct		
	ii)	Cor	rect straight line	2	P1 for (5, 4.2 to 4.4) or (10, 8.6 to	
	,	(thro	ough (10, 8.6 to 8.8)		8.8)	-	
	iii)	9.2(0) (± 0.1)	1	no ft.		
	iv)	575	(± 5)	1	no ft.		10
	,		()				18
3	a)	600	n	2	M1 for 25 x 30 x 8		
0	b) i)	ort /	400	2	M2 for $= x \cdot 10^2 \times 14$		
	D) I)	an 4	400	5	$101 \times 101 \times 101 \times 14$		
			0.400		or SC1 for $\pi \times 5^- \times 14$		
	II)	art	0400	1 √	ft their a + bi		
	iii)	art 1	3.9	3 √	ft for (<i>their bii</i>) \div (25 x 3)	0)	
					M2 for (<i>their bii</i>) ÷ (25 x	30) oe	
					or M1 for (<i>their bi</i>) ÷ (25	x 30)	9
4	a)	4, 7	, 6, 4, 4, 2, 3	2	SC1 for 5 or 6 correct or	7 correct	
					tallies		
	b)	1 ca	0	1			
	c)	2 ca	0	2	M1 for attempt at ranking	g list seen	
	d)	2.5	cao	2	M1 their $\sum f(x) \div \sum f$ in	- 10 by 2.5	
	,						
	\ ·\				seen		
	e) I)	0.23	$3(3)$ or $\frac{7}{2}$	1 1	allow 23%		
			30		ft from their table		
	ii)	0.3	or $\frac{3}{10}$ or $\frac{9}{30}$	1 √	ft from their table		
	f)	40		1 √	ft their table x 10 Allow	40/300	10
	•/			1,		10,000	19
5	3)	6		1			13
J	aj	_ /		1			
	b) i)	Pot	ation	I NA4	Holf turn M1 AL 1 for "	ovmmote."	
	0) 1)		au011	1VI 1 • •		symmetry	
		INTO		A1	ollow compatible	ofnoint	
		apo	ut (∠.ɔ, b) 0.e.	A1	anow correct description	i of point	
	ii)	Enla	argement	B1			
		s.f.	3	B1	accept scale 3, x3 etc		
		cen	tre (1,7)	B1	accept'B' for (1,7)		
	c) i)	3 ca	10	1	ignore units		
	ii)	1:9) cao	2	SC1 for 27 seen		
	,				M1 for correct answer n	lt	
	d)	2	6	2	0		
	u)	-2.		2	SC1 for ² on an li		

Page 2	Mark Scheme	Syllabus	Paper
	MATHEMATICS – NOVEMBER 2003	0580/0581	3

6	a)	i)	27	1		
		ii)	6	2	M1 for (39 - 3) ÷ 6	
		iii)	$\frac{P-3}{6}$ oe	2	M1 for P–3 seen or $\frac{P}{6} = \frac{6x+3}{6}$ oe	
	L-)	:)	4			
	b)	I)	4 <i>x</i> + 3		M1 for $9x + 4 - 2x - (3x + 1)$ oe allow $9x + 4 - 2x - 3x + 1$ oe for M1 or SC1 for $4x$ or $(+)3$ in answor	
		ii)	10 16 and 23	3	M1 for $9x + 4 = 49$ on A1 for $x = 5$	10
		11)		5		23
7	2)	:)	11	2	SC1 for 40 to 49	
1	a)	1) ;;)	52	2	B1 for 6 or 9 or 12 or 0 or 21 or 29	
		II)	52	3		
					of 32 of 112 seen	
_		:::)		4	+MT for adding 6 rectangles o.e.	
		III)	cuboid or rectangular	1	allow rectangular cubold but not	
		• 、	prism			
		IV)	52	1 √	ft from <i>their all</i> (not strict ft)	
		v)	24	2	M1 for 2 x 3 x 4	
	b)	i)	2(<i>pq</i> + <i>qr</i> + <i>pr</i>) oe as final	2	SC1 for <i>pq</i> or <i>qr</i> or <i>pr</i> seen or imp.	
			answer		for both parts. Other letters used	
					consistently MR–1	
		ii)	<i>pqr</i> as final answer	2	M1 for <i>pqr</i> seen	13
8	a)		12.5	3	M1 for 7.5 x 12 oe or 80/12 oe seen	
			NB 4021 answer 12.5		+M1 for $90-80$ x100 (explicit) or	
			working uses 75 and		+ W i for $-$ 80	
			800		7.50 - 6.66	
					after M0 SC2 for figs 124 to 126	
					ww or SC1 for 112.5	
	b)		120 minutes	3	3	
	~)			Ū	B1 for $\frac{2}{5}$ or 180 or $\frac{3}{5}$ x 300 seen	
					+ M1 for $\frac{2}{5}$ x 300 oe or 300-180	
	c)	i)	Accurate ⊥ bisector of	2	SC1 if accurate without arcs or	
			AB, with arcs $\pm 1^{\circ} \pm 1$ mm		incomplete line. Ignore extra lines	
			complete inside figure			
			Accurate bisector of <c< td=""><td>2</td><td>SC1 if accurate without arcs or</td><td></td></c<>	2	SC1 if accurate without arcs or	
			with arcs as above		incomplete line as above	
		ii)	correct area shaded	2 √	Areas marked as diagram	
			T		ft from clear intention to draw perp.	
			R 1 1		bisector and angle bisector	
			1			
			2			
			1			12
9	a)	i)	150 (km)	1		
		ii)	15 000 000 oe (√)	2	MI for <i>their</i> a)i) x 100 x 1000	
					or SC1 for <i>their</i> a)i) x 10 ⁿ when n>0	
	b)	i)	1270 to 1320	2	M1 for their 8.6 x their 150 must	
					have some evidence for their 8.6	
		ii)	(0)45 to (0)48 oe	1		
		iii)	245 to 248	2	SC1 for any answer in the range	
L		-			180 < x < 270	8
						20

Page 3	Mark Scheme	Syllabus	Paper
	MATHEMATICS – NOVEMBER 2003	0580/0581	3

10 a)	1 6 15 20 15 6 1	1		
	Sum 64	1	SC1 if 6 or 7 correct	
	1 7 21 35 35 21 7 1	2		
	Sum 128	1		
b) i)	512 accept 2 ⁹	2	SC1 for 256	
ii)	2 ⁿ	2	SC1 for 2 x 2 x 2 seen or description	
c)	165 330 462	1		11
	The first 6 numbers	1		
	repeated in reverse			
	order			
				<u>11</u>
			TOTAL	104

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 130

SYLLABUS/COMPONENT: 0580/04, 0581/04

MATHEMATICS

Paper 4 (Extended)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581	4

144:96 Β1 1 (a) After B0, allow SC1 for reversed "correct" final ans. www2 Final answer 3:2 or 1.5:1 or 1:0.667 B1 (2)32 (children) B1 (b) (i) (ii) 54 (adults off) Β1 (iii) 110 (adults on) B1 (iv) 26 (=x) w.w.w. Β1 (4)(c) M1 $300 \times \frac{4}{thier(6+5+4)}$ 80 children A1 www2 (2)Final Ans. 21 13 or (0)9 13 pm (d) (i) Β1 Condone hrs but hrs and $\underline{\text{minutes}} \Rightarrow \textbf{BO}$ (ii) Implied by 6 h 40 min or 400 min M1 7 h 20 min (o.e) $\times \frac{10}{110} \left(\text{or} \times \frac{100}{110} \right)$ 40 min A1 www2 (3)(11) 2 (i) 1.8(02..) Β1 Throughout (a)(i)(ii)(iii) NO misreads (a) allowed. (ii) M1 $1.99^2 = \frac{80h}{3600}$ o.e. Must be *h*, not \sqrt{h} (h =) 178(.2)A1 ww2 (Must be correct - e.g. 178.4 \Rightarrow **MO** ww) (iii) M1 (First step must be correct from correct $A^2 = \frac{hm}{3600}$ formula for first M1.) Correctly squares at any stage $3600A^2 = hm$ M1 Correctly multiplies at any stage $\frac{3600A^2}{m} = h$ M1 Correctly divides at any stage Only a correct answer in this form can get M3. (6) (i) (x+4)(x-4)Β1 (b) i.s.w. solutions in all (b) *x*(*x* – 16) (ii) B1 Condone loss of final bracket in any (b) (iii) (x-8)(x-1)B2 (4)

Marks in brackets are totals for questions or part questions.

Page 2		e 2	Mark Scheme	Syllabus Paper		
			IGCSE EXAMINATIONS – NOV	R 2003 0580/0581 4		
	(c)	(i)	$x(3x-9) = 2x^2 - 8$ o.e. $2x^2 - 8 = 3x^2 - 9x$	M1	No error seen and some working to	
			$x^2 - 9x + 8 = 0$	E1	reach final quoted equation. Must have $= 0. (E = established)$	
		(ii)	<i>x</i> = 1	B1		
			<i>x</i> = 8	B1		
		(iii)	time = 15 (sec) c.a.o.	B1		
			distance = 120 (m) c.a.o.	B1		
				(6)		
				(16)		
3	(a)	(i)	$17^2 + 32^2 - 2.17.32 \cos 40^\circ$	M2	Allow M1 for sign error or correct impled	
			√their 479.54	M1	Dep M2. <u>NOT</u> for $\sqrt{225\cos 40^{\circ}}$ or $\sqrt{2146}$	
			Answer in range 21.89 to 21.91 (m)	A1	www4	
		(ii)	$\frac{\sin T}{17} = \frac{\sin 40^{\circ}}{\text{their } 21.9}$	M1	or $17^2 = 32^2 + (\text{their } 21.9)^2 - 2.32$. (the 21.9) cosT	
			$\sin T = \frac{17 \sin 40^{\circ}}{\text{their } 21.9}$ (0.499)	M1	$\cos T = \frac{32^2 + (\text{their } 21.9)^2 - 17^2}{2.32. \text{ (their } 21.9)}$	
			29.9°	A1	Accept 29.93° to 29.94°. www3	
				(7)		
	(b)	(i)	125° c.a.o.	B1	All bearings must be $0^\circ \le \theta \le 360^\circ$ f score	
	**	(ii)	305°	В1√	$\sqrt{(180^\circ + \text{their } 125^\circ)}$ correct	
	**	(iii)	335° or 334.9°	В1√	$\sqrt{100}$ (their 305° + their <i>T</i>) correct	
				(3)		
	(c)		$\tan(\hat{F}) = \frac{30}{32}$ o.e.	M1	or $F\hat{X}T = \tan^{-1} \frac{32}{30}$ clearly identified.	
			12 2°	A1	(43.15239°) www2 <u>NOT</u> 43.1	
			43.2	(2)		
				(12)		
1	(a)		Scale correct	S1	$0 \le t \le 7$ (14 cm) and $0 - 60 \uparrow$ (12 cm	
			8 correct plots (0 , 0), (1 , 25),		Allow P2 for 6 or 7 correct	
			(2, 37.5), (3, 43.8), (4, 46.9),	P3	P1 for 4 or 5 correct	
			(5 , 48.4), (6 , 49.2), (7 , 49.6)		Accuracy better than 2mm horizontally In correct square \uparrow	
			Reasonable curve through 8 points	C1 (5)	Not for linear or <u>bad</u> quality	

Page 3		e 3	Ма	rk Scheme		Syllabus	Paper	
			IGCSE EXAMINA		VEMBE	R 2003	0580/0581	4
((b)	(i)	$f(8) = 49.8 \text{ or } 49\frac{103}{128} \text{ o}$.e.	B1	Do not acce	ept improper fr	actions
			$f(9) = 49.9 \text{ or } 49\frac{231}{256} \text{ or }$.е.	B1			
		(ii)	$f(t \text{ large}) \approx 50$		B1			
					(3)			
((c)	(i)	Tangent drawn at <i>t</i> = 2		B1	Not a chord	and not daylig	ght
			Uses vert/horiz using se	cale	M1	Can be give	en after B0 if li	ne not too far
÷	**		Answer correct for their	tangent	A1 √	out		
		(ii)	Acceleration or units	0	B1	Accept ms ⁻²	² , m/s ² , m/s/s.	
		()			(4)		, ,	
((d)	(i)	Straight line through (0	, 10)	B1	ר		
	()	()	Straight line gradient 6	· ,	B1	א Must be ru	iled and full lei	ngth to earn E
-	**	(ii)	one $1000000000000000000000000000000000000$	e for <i>t</i>	В1√	2		
-	**	.,	Second \sqrt{t} and range		В1√			
		(iii)	Second $\sqrt{t} \frac{and}{and}$ range Distance = area (under curve)		M1			
		()	First particle (f(t)) goes	further	A1			
					(6)			
					(18)			
Mar	king	final a	answers throughout this c	uestion				
5 ((a)	(i)	0.2	o.e.	B1	Accept 2/10), 1/5, 20%	
		(ii)	0.4	o.e.	B1	After first B	0 , condone "2	in 10" type
		(iii)	0.5	0.0	B1	Never cond	one 2 · 10 tvp	2
		(ii) (iv)	0.1	0.0.	B1			5
		(\mathbf{v})	0	0.0.	B1	Accept "nor	ne" "nothina"	0/10 nil zerc
		(•)	0		(5)		ie, nouning,	o, ro, m, 20rc
((b)	(i)	2/10 x 1/9		M1			
	()	()	1/45	o.e.	A1	Accept 2/90), 0.0222 2	.22% www2
		(ii)	3/10 x 2/9		M1			
			1/15	o.e.	A1	Accept 6/90) etc, 0.0666(c	r 7), 6.66 or
		(iii)	(their) 1/45 + (their) 1/1	5	M1	0.07 /0 00000	-	
		,	4/45	o.e.	A1	Accept 8/90 8.89% www) etc, 0.0888(c /2	r 9), 8.88 or
		(iv)	<u>Clearly</u> 1 – (their) 4.45	o.e.	M1	Alternative	method must b	pe complete
		-	41/45		A1	Accept 82/9	00 etc, 0.911, 9	91.1% www2
					(8)			

	Page 4		Mark Scheme		Syllabus	Paper		
			IGCSE EXAMINATIONS – N	OVEMBER	2003 0580/0581 4		4	I
				1				
6	(a)		$\pi(30)^2$ (50)	M1				
			141 000 (cm ³)	A1	(141 300	to 141 430)	WWV	v2
				(2)				
	(b)	(i)	18 (cm)	B1				
		(ii)	$\cos\left(\frac{1}{2}\angle AOB\right) = (\text{their 18})/30$	M1	Allow M1 other me (180° – 2	or M2 at simila thods e.g. sin / A)	ar stages for A = 18/30 the	n
			x2	M1dep	X	/		
			∠AOB = 106.26° c.a.o	A1	Must hav	e 2 decimal pla	aces seen.	
				(4)	ww1 (cor	ndone = 106.3	afterwards)	
	(c)	(i)	(their) $\frac{106.3}{360}$ used	M1				
			$\pi(30)^2$ used	M1				
			834 to 835.3 (cm ²)	A1	www3			
		(ii)	$\frac{1}{2}$.30.30sin (their) 106.3° or $\frac{1}{2}$.48.18	M1				
			- 431.8 to 432 (cm ²)	A1	www2			
		(iii)	Ans. Rounds to 403 cm^2	A1				
		()		(6)				
	(d)	(i)	50 x (their) 403	M1				
	**	()	20 100 to 20 200 (cm ³)	A1√	√ correct	for their "403"	wwv	v2
	**	(ii)	20.1 to 20.2 (litres)	B1√	√ their pr	evious answer	÷ 1000	
		()		(3)				
	(e)		$k\left[\frac{1}{2}$ their (a) – their (d) (i)	M1	<i>k</i> = 1 (cm consister	k^{3}) $k = .001$ (litration of the second secon	es) <i>k</i> = other rror.	⇒
			50.3 to 51 (litres)	A1	Marking f	final answer	wwv	<i>N</i> 2
				(2)				
				(17)				
7	(a)	(i)	$F\begin{pmatrix} 2\\ -4 \end{pmatrix}$	M1 A1	M marks description SC1 for c	for letters, A m ons. If <u>no</u> letter correct descript	arks for ⁻ given, allow ion	
		(ii)	D <i>x</i> = 1	M1 A1				
		(iii)	E (2 , –1)	M1 A1				
		(iv)	C (s.f.) 3	M1 A1				
		(v)	A Shear	M1 A1				
				(10)				

Page 5	Mark Scheme		Syllabus	Paper		
	IGCSE EXAMINATIONS – NOVEMBER 2003			0580/0581	4]
(b)	$(-1 - 2) \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix}$ or QP	M1	Penalty - possible.	-1 for <u>each</u> wro	ong one thou	ght
	(– 11 –17) <u>final</u> ans	A2	Allow SC	1 for one corre	ect	
	$(1\ 2\ 3)\begin{pmatrix} -1\\2\\3 \end{pmatrix}$ or RS	M1				
	(12)	A2	Brackets	essential here		
		(6)	Allow SC	1 for 12 or –1	+ 4 + 9	
		(16)				
8 (a) (i)	10 < M ≤ 15	B1	Must clea	arly mean this	and not 32	
(ii)	Midpoints 5, 12.5, 17.5, 22.5, 32.5	M1	Allow for	3 or 4 correct		
	$\sum fx \ (60 + 400 + 490 + 540 + 780)$	M1	(2270) N marginal	eeds previous ly out	M1 or only	
	(their) 2270 ÷ 120	M1	dep prev	ious M1		
	18.9 (2) (kg)	A1	www4			
	(1)					
(iii)	36°	B1				
		(6)				
(b)	Horizontal scale 2 cm \equiv 5 units	S1	$0 \le M \le$	40. Accuracy	< 2 mm.	
	(numbered or used correctly)		lf S0 (e.g	ı. 1 cm ≡ 5 unit	s) can score	В5
			If S0 (e.g correct w polygon s	ı. 0, 10, 15) ca ⁄idth bars. Per superimposed.	n only score nalty –1 for	on
	Heights 3k, 16k, 14k, 12k, 4k cm	B5	If not sco allow SC (Needs ≩ k if k ≠ 1.	red, decide on 1 for each "cor ≥ 2 bars to dec)	their "k" and rect" bar. ide on value	of
	Their k = 1	B1				
		(7)				
		(13)				
9 (a) (i)	(Diagram) 5 only	B1				
(ii)	(Diagram) 4 only	B1				
(iii)	(Diagram) 2 only	B1				
		(3)				

Page 6	Mark Scheme			Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003			0580/0581	4
(b)	Diagram 1.9 (cm^2)	B1	9 00 to 3	sf	
(8)	Diagrams 2 and 3 have same area	B1	0.00 10 0	0.11	
	One of them $\frac{1}{2} \times 3 \times 3$	M1			
	$4\frac{1}{2}$ (cm ²)	A1	www2		
	Diagram 4 $\frac{1}{4} \pi 3^2$ s.o.i.	M1	(7.07 cm	2)	
	$\frac{1}{2} \times 6 \times 6 - \text{their } 9\pi/4$	M1	indep. i.e	e. 18 – $k\pi$ wher	e k numerical
	10.9 (cm ²)	A1	www3		
	Diagram 5 22 $\frac{1}{2}^{\circ}$ s.o.i	M1	a A a	(Be=172)	. = √72)
	6 tan22	M1	(2.485) (This is AD <u>or</u> D	DE)
	$\frac{1}{2}$ (6 – their 2.485) x 6	dep.M1	or 18 – –	$\frac{1}{2}$ x 6 x their 2.	485. (o.e.)
	10.5 (cm ²)	A1	www4		
		(11)			
		(14)			