Notes	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581

TYPES OF MARK

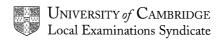
Most of the marks (those without prefixes, and 'B' marks) are given for accurate results, drawings or statements.

- **M** marks are given for a correct method.
- **B** marks are given for a correct statement or step.
- **A** marks are given for an accurate answer following a correct method.

ABBREVIATIONS

a.r.t.	Anything rounding to
b.o.d.	Benefit of the doubt has been given to the candidate
c.a.o.	Correct answer only (i.e. no 'follow through')
e.e.o.	Each error or omission
o.e.	Or equivalent
SC	Special case
s.o.i.	Seen or implied
WW	Without working
www	Without wrong working
$\sqrt{}$	Work followed through after an error: no further error made
/	Work followed through and another error found

INTERNATIONAL GCSE


MARK SCHEME

MAXIMUM MARK: 56

SYLLABUS/COMPONENT: 0580/01, 0581/01

MATHEMATICS

Paper 1 (Core)

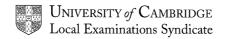
Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581	1

^{*} indicates that it is necessary to look in the working following a wrong answer.

1	(a) 19.55249(345)	1	
	(b) 19.55	1 √	
2	(a) 3.3 to 3.7	1	Allow negative values
	(b) - 0.9	1 √	2.6 - I(a)I
3	(a) $\frac{33}{50}$ 67% 0.68	1	Allow 0.66, 0.67, 0.68 o.e.
	(b) $\frac{17}{25}$	1	
4	42	2*	M1 72 ÷ 12
5	781000	2*	M1 for 550 000 x 1.42
6	366	2*	M1 for "97.60" x 3.75
7	$\frac{4}{9}$	2*	M1 for $\frac{9}{4}$ or 0.44, $2\frac{1}{4}$, $\frac{2}{3}$, $\frac{2}{3}$
8	(a) - 30 c.a.o.	1	
	(b) v(4u – 3)	1	c.a.o.
9	1	3*	M1 6 – 3x
	$\frac{1}{2}$		M1 x + 3x = 6 - 4
10	(a) 0.004	2*	M1 figs 2 : 500000 or figs 4 in
	(b) 4 x 10 ⁻³	1 √	answer
11	a = 3, b = -1	3*	M1 adding or x 2 nd equation by 3 and subtracting
			A1 A1 o.e. (Rearrange and substitute scores M1)
			Working essential if only one answer is correct
12	(a) 88 c.a.o.	1	Not 88.0
	(b) 85.5, 86.5	1, 1	B1 both correct and reversed
13	(a) 20 05	1	Allow 20:05, 8.05 pm . Not 20.5 or 20h5m
	(b) (i) 0.4	2*	M1 30 ÷ 75
	(ii) 24	1 √	(i) × 60

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581	1

14	(a) $\frac{3+4}{6} = \frac{7}{6}$	2*	M1 for first term o.e.
	(b) $\frac{6}{5} \times \frac{7}{4} = \frac{21}{10}$	2*	M1 for improper fractions
15	(a) (i) 28	2*	M1 for ½ x 8 x 7
	(ii) 176	2√	M1 for $4 \times (i) + 8^2 \text{ A1} $
	(b) pyramid	1	
16	(a) 90	1	
	(b) 7.71	2*	M1 sin40 = PB/12 or <u>12</u> = <u>PB</u> sin(a) sin40
	(c) 113	2*	M1 π x 6 ²
17	(a) 9.59	2*	$M18.3^2 + 4.8^2$
	(b) 210	3*	M1 tan x = $\frac{4.8}{8.3}$ M1 180 + x at P If sin or cos used then allow $$ from (a). NO marks for scale drawing
18	(a) (i) 35	1	
	(ii) 25	1 √	60 - (i)
	(b) similar	1	
	(c) 11(.0)	2*	M1 <u>16.6</u> = <u>CX</u> o.e. Not 11.1 8.3 5.5
			or M1 for $\frac{16.6}{\sin 120} = \frac{CX}{\sin 35}$
	TOTAL	56	


INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 70

SYLLABUS/COMPONENT: 0580/02, 0581/02
MATHEMATICS

Paper 2 (Extended)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581	2

Question Number	Mark Scheme	Part Marks	Notes	Question Total
1	0.049 < 5% < 5/98 o.e.	2	M1 for figs 51 seen after 0, SC1 for 2 correct entries	2
2 (a)	7.85 to 8(.00)	1		
(b)	56.25 to 57.5(0)	1		2
3	194(.4)	2	M1 for 54 × 3600/1000 or SC1 for <i>figs</i> 194seen	2
4	$\begin{bmatrix} -4 \end{bmatrix}$ c.a.o.	1		
	$\left(-7\right)$ orange.	1		2
5	38	2	M1 for 665/(17 + 18) s.o.i. by equivalent complete method	2
6	201.25	2	allow 201 or 201.3 in ans. space if 201.25 seen M1 for 17.5 × 11.5 s.o.i.	2
7	4 < x <6	2	SC1 for either one after 0, M1 for 8<2x<12 s.o.i.	2
8	±11 - ±1331 14 196 - -7 49 -	3	2 for 4 or 5 correct 1 for 2 or 3 correct	3
				1
9 (a)	$\frac{1}{6}$ or 0.16() or 0.17	1		
(b)	art 9.5(°)	2	M1 for correct use of tan o.e.	3
10	$\frac{x+11}{(x-3)(x+4)}$ o.e.	3	M1 for denom. $(x-3)(x+4)$ o.e. M1 for $2(x+4)-(x-3)$ o.e.	3
11	integer $\sqrt{(112/7)}$	1	accept $\sqrt{16}$ or 4	
	rational nos. 2.6 4/17	1 1	accept 0.235 accept 3.46	
	irrational no. $\sqrt{12}$	1	αυυ σ μι υ. 1 υ	4
12 (a)	18	2	M1 for $2p + 3p + 90 = 180$ o.e.	
(b)	30	2	or SC1 for 36 or 54 seen www. M1 for $q + 5q = 180$ o.e. or SC1 for 150 seen	4
				14

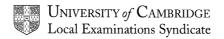
Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581	2

13 (a)	100	1		
(b)	1200 √	1	$\sqrt{\text{ for } (12 \times \text{ their a})}$	
(c)	10 < x < 30 ht 30 mm 60 < x < 100 ht 22 mm	1 1		4
14 (a)	10 17 4 -6 -9 0	2	SC1 if 4 or 5 correct	
(b)	$ \frac{1}{2} \begin{pmatrix} -2 & -4 \\ 3 & 5 \end{pmatrix} $ oe	2	1 for $\frac{1}{2}$ s.o.i., 1 for $k \begin{pmatrix} -2 & -4 \\ 3 & 5 \end{pmatrix}$ s.o.i.	4
15 (a)	50.3	2	M1 for $\frac{(7087000-4714900)}{4714900}$ o.e. must be recognisable complete correct method	
(b) (i)	4710000 or 4.71 × 10 ⁶	1		
(ii)	7.087 × 10 ⁶	1	accept 7.09×10^6 , ignore superfluous zeros	4
16 (a)	24.7	2	M1 for 80 × sin 18° seen	
(b)	46.2	2	M1 for $3(4 + 11.4)$ o.e. (no MRs) 3×3.8 does not imply 11.4	4
				16
17 (a)	Correct shear ±1mm	2	M1 for shear with either axis invariant	
(b) (i)	Correct stretch ±1mm	2	M1 for stretch with either axis invariant	
(ii)	$\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} cao$	1		5
18 (a)	1:1000	1		
(b) (i)	accurate perp bisector of AD, with two pairs of arcs	2	SC1 if accurate but no arcs SC1 if accurate arcs but no line	
(ii)	accurate bisector of <bcd, arcs<="" of="" pairs="" th="" two="" with=""><th>2</th><th>SC1 if accurate but no arcs SC1 if accurate arcs but no line</th><th></th></bcd,>	2	SC1 if accurate but no arcs SC1 if accurate arcs but no line	
	T marked in correct position	1	Indep.	6
				11

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581	2

19 (a)	correct demonstration	2	M1 for 20x + 80y seen		
(b)	x + 2y = 120 o.e. fully simplified	2	M1 for 25x + 50y = 3000 seen condone inequality signs for method mark. Ignore \$		
(c)	straight line thr. (120,0) and (0,60) 60 cars, 30 trucks	1√ 1	√ from <i>their b</i>). Line must be complete , and be on given grid also allow 80,20; 100,10; 120,0 or points on the correct section of the line $(60 \le x \le 120)$	6	
					6
20 (a)	art 0.1, 0.3, 0.6, 1, 1.7 and 3	3	SC2 for 4 or 5 correct SC1 for 2 or 3 correct		
(b)	correct curve drawn	2	P1 for correct or √ 6 or 7 points correctly plotted ±1mm		
(c)	1.6 ≤ x <1.65	1		6	
					6

TOTAL MARKS 70


INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 104

SYLLABUS/COMPONENT: 0580/03, 0581/03
MATHEMATICS

Paper 3 (Core)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581	3

1	(a)	7	1	
		40	1	
	(b)	42	1	
	(c) (i)	9	1	
	(ii)	8	2	M1 for evidence of idea of mid-value
	(iii)	8.3	3	M1 for 4 x 5 + 7 x 6+ 3 x 12 or 415 M1 (dep) for ÷ 50
	(d)	5cm	2	M1 for 1cm to 2 students o.e.
	(e)	36°	2	M1 for <u>5</u> x 360 50
	(f)	\$7.5(0)	2	M1 ÷ 3
	(g)	22	2	M1 for 11 (x 100) 50 SC1 for 19 (x 100) = 38%
	(h) (i)	6 50	1	A contact into the first in a
	(ii)	$\frac{14}{50}$	1	Accept equivalent fractions, decimals or percentages
	(iii)	1	1	
•				19
2	(a)	120,24, 20	1, 1, 1	
	(b)	7 correctly plotted points f.t. correct curve	P3 C1	Deduct 1 for each error (±1mm) Must be a reasonable hyperbola
	(c)	1.6 to 1.8	1	Accept f.t.
	(d)	120,0	2	
	(e)	Straight line through 4 points	L2	L1 if short or not ruled SC1 for √ if all straight lines
	(f)	(1.2 – 1.4, 92 – 96) (4.6 – 4.8, 24 - 26)	1 1	} Accept f.t.
	(g)	-20	2	SC1 for 20 or M1 for rise/run seen (numerical attempt)
			•	16

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003		3

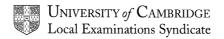
3	(a) (i)	175 cents	1	
	(ii)	25b cents	1	
	(iii)	\$1.75	1 or √	
	(iv)	$\$\frac{b}{4} \text{ (allow } \frac{25b}{100} \text{) (0.25b)}$	1 or √	If involves b
	(b) (i)	$\frac{T}{n}$	1	
	(ii)	The cost of one bar	1	
	(c) (i)	4.5(0)	1	
	(ii)	4.2(0)	2	M1 for (36 – 6.60)/7
	(iii)	$\frac{y}{x}$	1	
	(iv)	$\frac{y-7}{x-1}$	2	B1 for <i>y</i> – 7 or <i>x</i> – 1 seen
		<i>x</i> - 1		12
4	(a) (i)	P with vertices (4, 11), (2, 11), (2, 12)	2	SC1 if translated by $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$ etc.
	(ii)	Q with vertices (9, 7), (11, 7), (11, 8)	2	SC1 if reflected in $y = 8$ or $\sqrt{\text{from } P}$
	(iii)	R with vertices (7, 7), (7, 5), (6, 5)	2	SC1 if 90° clockwise from A or √ from Q
	(iv)	S with vertices (7, 7), (3, 7), (3, 9)	2	SC1 if different scale factor about <i>A</i> or enlargement of triangle <i>T</i> s.f. 2 about <i>B</i> or <i>C</i>
	(b) (i)	Translation $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$	1	
	/** \	(-4)	1	
	(ii)	Enlargement Scale factor 1/2 centre A	1 1 1	
	(c) (i)	90° (anti-clockwise)	1	Accept 270° clockwise
	(ii)	(3, 3)	2	B1 for 1 correct
			1	16

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003		3

5	(a) (i)	Accurate and with arcs	2	B1 without arcs or inaccurate
	(ii)	Accurate quarter-circle r = 5	2	SC1 for r > 4.8 or < 5.2 with compass or correct r but freehand
	(b)	Correct region shaded	1 or √	If convinced
	(c) (i)	45° correct	1	± 2°
	() ()	12cm correct	1	± 1mm
	(ii)	Reasonable tangent	1	Must be ruled ±5°
	(iii)	6.8 to 7.2	1	Accept f.t. ±0.1
				9
6	(a)	3 x 1 x 1.5 + 9 x 1 o.e.	2	M1 for appropriate strategy M1 (dep.) for correct numbers used
	(b)	3780	3	M1 for volume is area x length, 13.5 x 2.8 or 37.8 B1 for 280 seen
	(c) (i)	1.92	2	M1 for 2 x 1.2 x 0.8
	(ii)	1 920 000 f.t.	2	M1 for (their) (i) x 10 ⁶ or 200 x 120 x 80
	(iii)	507 f.t.	2	M1 for (c) (ii) ÷ (b) or 507· or 508
	(d)	One vertical line drawn	1	Within \pm 0.2cm of the centre
	(e)	(order) 1 or no symmetry	1	
				13
7	(a) (i)	84°	1	
	(ii)	22°	1	
	(b)	11	1	Accept 10.8 → 11, 10min 48sec → 11min
	(c)	16°	1	
	(d) (i)	32, (16), 8, 4	3	B1 for each
	(ii)	Halving o.e.	1	
	(e)	20°	1	Allow answer >20 and <22
			1	9

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581	3

8	(a)	3 new lines from the vertex to the base	2	
	(b)	6, 7, <i>n</i> + 2	3	B1 for each
	(c)	15, 21, 55	3	B1 for each
	(d)	12	2	SC1 for 10 or 11
				10


INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 130

SYLLABUS/COMPONENT: 0580/04, 0581/04
MATHEMATICS

Paper 4 (Extended)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581	4

Marks in brackets are totals for questions or part questions.

1	(a)	(\$) 3490		B1 (1)	
	(b)	16 <i>n</i> + 1570 = 4018 <i>n</i> = 153	o.e. c.a.o.	M1 A1 (2)	ww2
	(c)	x + y = 319 10x + 16y = 3784 Correct method x = 220 y = 99	o.e. o.e. s.o.i.	B1 B1 M1 A1 A1 (5)	e.g. 1 st × 10 and subtraction. Condone arith . error (available on wrong eqtns provided coefficients not equal.) or 220 \$10 tickets or 99 \$16 tickets (ww Correct answer⇒M1)
	(d)	0.85 × \$16 (\$)13.6(0)	o.e. c.a.o.	M1 A1 (2)	[\$16 – 0,15 × \$16] ww2
	(e)	100 × \$10 125 (\$)8	o.e.	M1 A1 (2)	ww2
			TOTAL	12	
2	(a)	$120^2 = 77^2 + 55^2 - 2$ $\cos x = \frac{77^2 + 55^2 - 1}{2.55.77}$.55.77cos <i>x</i> 20 ²	M1 M1	Implied by next line
		or $-\frac{5446}{8470} = \cos x = -\frac{130}{8470}$	0.64(29752) s.o.i. (-0.643)	A1 (4)	Implied by correct answer which rounds to 130° Scale drawing⇒M0. ww⇒SC2
	(b)	$\sin y = \frac{55 \sin 45^{\circ}}{60}$		M2	If not scored, allow M1 for correct implicit eqtn
		sin y = 0.648 (1812)	s.o.i.	A1	Implied by answer 40° after some working
		y = 40.4		A1 (4)	Accept more accuracy but not less. www4 (40.39° – 40.41°; 40°ww⇒ SC2)
	(c)	(i) 225° (ii)* 275°		B2 √	Correct method seen OR answer 222-224°, allow Sc1 $\sqrt{405^\circ}$ – their x (provided < 360°). Answer 291-293°, allow
				(4)	SC1
			TOTAL	12	,

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581	4

3	(a)			
"	(a)			
		0.35	B1	Accept percentages or fractions
		0.6	D1	but not ratios
		0.6	B1	
		0.55	B1 (3)	
	(b)	(i) 0.4 × 0.65 <u>ONLY</u>	M1	
		0.26 c.a.o.	A1	www2
		(ii)* Either		,
		$0.4 \times 0.35 \sqrt{\ \text{or}\ 0.6} \sqrt{\times 0.45}$	M1	Accepting their √ values for M marks
		$0.4 \times 0.35\sqrt{+0.6} \times 0.45 \frac{\text{ONLY}}{\text{ONLY}}$	M1	
		0.41 c.a.o.	A1	www3
		(iii)* Either 1 – (.6 $\sqrt{\times}$.55 $\sqrt{\cdot}$) or .26		
		+ .14√ + .27√	M1	
		0.67 c.a.o.	A1 (7)	www2
	1-1	(;) 40	D4	
	(c)	(i) 18 c.a.o.	B1	
		(ii) 12 ÷ (his 18 + 6) o.e. 30 c.a.o.	M1	SC1 for 34.3 ofter 18 in (a) (i)
		C.a.o.	A1 (3)	SC1 for 34.3 after 18 in (c) (i)
	(d)	(i) 22.5	B1	Accept 22min 30sec
	` ´	(ii)* Realises probability "STOP.	M1	Implied by correct answer after
		STOP"	dep.	correct work. Dep. On 18 and
				22.5 (approx.)
		0.33	A1√	$\sqrt{1}$ – their (b) (iii) or (their 0.6) ×
			(3)	(their 0.55)
		TOTAL	16	
١.	, ,		0.4	
4	(a)	Scales correct	S1	$-4 \le x \le 4$ and $-8 \le y \le 8$
		9 points correctly plotted (1mm)	P3	Allow P2 for 7 or 8 correct, P1 for 5 or 6 correct
		Reasonable curve through 9 points	C1√	√ provided shape maintained,
		Treasonable carve through 5 points	(5)	curvature OK and not ruled
			(0)	carvatare on and <u>not</u> raica
	(b)	$-3.6 \le x \le -3.3, x = 0, 3.3 \le x \le$	B2 (2)	Allow B1 for 1 correct non-zero
		3.6		solution; condone (-3.5, 0)
				(answers must be in range <u>and</u>
				correct for their graph)
	(c)	Line from (-4, -3) to (4, 5), and	B2 (2)	If B0, allow B1 for gradient 1 or
	(5)	ruled	(_)	intercept 1 on single line
	(d)	g(1) = 2	B1	Not (1, 2)
		fg(1) = -8	B1	
		$g^{-1}(4) = 3$	B1	
		$3.75 \leqslant x \leqslant 3.9$	B1 (4)	Lost if <i>y</i> -coordinate given.
				Answer must be OK for their
i			l	graph

	Page 3	Mark Scheme	Syllabus	Paper
ĺ		IGCSE EXAMINATIONS – JUNE 2003	0580/0581	4

	(e)	Tangent drawn at <i>x</i> = 3 on curve Vert./Horiz. using scale	B1 M1	Not chord or daylight Dep. on reasonable approx to
		Answer in range 5-10 and OK for theirs	A1 (3)	tangent used at $x = 3$ (N.B. Gradient = 4.5 + y -value of tangent at $x = 4$)
		TOTAL	16	
_	(-)	1/ 40 40 -: 000	N 4 4	A constant and the district of the state of
5	(a)	½ 10.10.sin60° o.e.	M1	Any complete method including $\sqrt{15.5.5.5}$
		43.3 cm ² or 25 $\sqrt{3}$	A1 (2)	ww2
	(b)	$2\pi r = 10$ s.o.i. $r = 1.59 (15494cm)$	M1 A1 (2)	Accept $\pi D = 10$ ww2
	(c)	(i) Tetrahedron or Triangular Pyramid	B1	
		4 (his (a))	M1	If not his (a) then correct Δ area method needed
		* 173 (.2cm ²) or 100 $\sqrt{3}$	√A1 (3)	$\sqrt{4}$ (a) to 3s.f.
		(ii) Cylinder	В1 М1	Accept circular (based) prism Not $2\pi r^2$ 10 or any other
		Uses π (any <i>r</i>) ² ×10 <u>ONLY</u>		modifications
		Uses π (his (b)) ² ×10	M1 dep.	Implies M2
		Correct or √ in range 79.35- 79.65cm³	A1 (4)	
		(iii) Cone	B1	Accept circular/round (based) pyramid
		h 10		
		<i>r</i> Appreciates hypotenuse = 10	M1	e.g. right-angled Δ drawn or \cos
				$x = \frac{\dots}{10}$
		$h = \sqrt{10^2 - (his(b))^2}$	M1	
		9.87 (25362cm)	A1 (4)	
		TOTAL	15	
6	(a)	2x(x + 4)(x + 1) (cm ³) $2x^3 + 10x^2 + 8x$ (cm ³)	B1 B1 (2)	Must see this. Ignore further correct work.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581	4

	(b)	2x - 2, x + 2, x	B3	B1 each correct answer, any
		Internal volume = $2x^3 + 2x^2 - 4x$	B1	order but in this form
		Wood = his (a) – his(Int. Vol.)	M1	(Both could be wrong)
		Correctly simplifies to $8x^2 + 12x$	A1 (6)	No errors
	(c)	(i) $8x^2 + 12x = 1980$	B1 (1)	No error seen. Needs = 0
	(0)	$2x^2 + 3x - 495 = 0$		No citor seen. Needs – 6
		$\frac{p \pm \sqrt{q}}{r} \text{ form} \Rightarrow p = -3 \text{ and } r = 4 \text{ or}$		
		, 2×2	B1	Alt. method B2 $(x-15)(2x + 33)$
		\downarrow		or SC1 for sign error(s) in brackets
		$\Rightarrow q = 3^2 - 4.2 - 495$	B1	Or $q = 3969$ or $\sqrt{q} = 63$. Allow
				for $p \mp \frac{\sqrt{q}}{r}$
		$\Rightarrow x = 15$ www	B1	If factorising method used, answers only score if correct
		$\Rightarrow x = -16.5 \text{ or } -\frac{33}{2} \qquad \text{www}$	B1 (4)	and from correct bracket
		(ii) Uses +ve answer	B1	Rejects –ve solution explicitly or
		* 30 by 19 by 16	√B1	implicitly $\sqrt{2(\text{his})}$, (his) + 4, (his) +1
		30 by 19 by 10	(2)	V2(1115), (1115) + 4, (1115) + 1
		7074		
		TOTAL	15	
7	(a)	→		
		(i) $\overrightarrow{OS} = 3a$ www	B1	
		(ii) $\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$ www	B1	
		(iii) $\overrightarrow{CD} = \mathbf{a}$ www	B1	
		(iv) $\overrightarrow{OR} = 2a + 2b$ www	B2	If B0, allow SC1 for correct but unsimplified seen
		(v) $\overrightarrow{CF} = 2a - 2b$ www	B2 (7)	If B0, allow SC1 for correct but unsimplified seen
	(b)	(i) b = 5	B1	
		(ii) $ a - b = 5$ www	B1 (2)	
	İ		1	1

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581	4

	(c)	(i) Enlargement, S.F. 3,	B2	Allow SC1 for Enlargement or
		Centre 0	N/1	(S.F. 3 <u>and</u> Centre 0)
		(ii) Reflection In line CF o.e.	M1 A1 (4)	SC1 for 'Mirrored in CF' o.e.
	(d)	(i) 6 c.a.o.	B1	
		(ii) 60°	B1 (2)	
		TOTAL	15	
	(-)	(:)	D4	
8	(a)	(i) \$60-80 (ii) Midpoints 10, 30, 50, 70, 90 + 120	B1 M1	Needs at least 4 correct s.o.i.
		Σ fx attempted (12880)	M1*	Dep. on previous M1 or their
		$\Sigma fx \div 200$	M1	midpoints ± 0.5 Dep. on M1*
		Final answer \$64.40 c.a.o.	A1 (5)	Needs 2 d.p., www4 (64.4⇒M3 AO)
	(b)	(i) (≤)20, (≤)40, (≤)60, (≤)80, (≤)100, (≤)140	B1	Not for $\frac{20-40}{42}$ type
		10, 42, 90, 144, 180, 200 (ii) Scales correct and labelled or used to 140 and 200	B1 S1	Vert. 20cm ≡ 200 and Horiz. ≡ 14cm 140. Reversed axes SO
		6 plots correct (20, 10) → (140, 200)	P2	P1 for 4 or 5 correct. 1mm accuracy
		Graph from (0, 0), line or curve	C1 (6)	Through all 6 points. Dep. on P1
	(c)	(i) Median (\$)63-64	B1	All answers in (c) must also be correct for their graph (1mm)
		(ii) U.Q. (\$)82-84	B1	
		(iii) IQR (\$)38-41 (iv) Using \$75 reading on Cum.	B1 M1	e.g. answer 130 implies this
		Freq. Graph – 67 or 68 or 69 or 70	A1 (5)	Must be integer answer and OK
		or 71 or 72	A1 (3)	for their graph
		TOTAL	16	
9	(a)	Diagram 1⇒ 25 % c.a.o.	B1	For whole section reversed (a)
	(~)	Diagram $2 \Rightarrow 12\frac{1}{2}\%$ o.e.	B2	or (b), treat as MR-1 per section For Diagrams 2-4 accept non%
		•		equivalents
		Diagram 3⇒ 37 ½% o.e.	B2	Also in each case if 2 not scored, allow SC1 if correct idea seen (e.g. ½h ÷4h for Diagram 2)
		Diagram 4⇒ 60 % o.e.	B2 (7)	Diagram 2)

	Page 6	Mark Scheme	Syllabus	Paper
Ī		IGCSE EXAMINATIONS – JUNE 2003	0580/0581	4

(b)	Diagram 5⇒1/9 o.e. frac	ction	B1	
	Diagram 6 ⇒ 1/25	o.e.	B2	In Diagrams 6 and 7, accept non-fraction equivalents. If B0, allow SC1 for $(\pi)5^2$ seen
	Diagram 7⇒ 5/9	o.e.	B3 (6)	
		TOTAL	13	
	FINA	AL TOTAL	130	

Grade thresholds taken for Syllabus 0580/0581 (Mathematics) in the June 2003 examination.

	maximum	minimum mark required for grade:				
	mark available	А	С	E	F	
Component 1	56	-	40	25	18	
Component 2	70	59	40	28	-	
Component 3	104	-	73	50	41	
Component 4	130	93	56	32	-	

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.