MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

0580 MATHEMATICS

0580/43 Paper 43 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2010	0580	43

Abbreviations

cao correct answer only
cso correct solution only
dep dependent
ft follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
www without wrong working

Qu.	Answers	Mark	Part Marks
1 (a) (i)	2:3	1	
	$30 \div 2 \times 3$ o.e.	E1	Allow $2: 3$ (oe) $=30: 45$
(iii)	60	2	M1 for $3 \div 5 \times 100$ oe
(b)	31.83	3	SC2 for 31.827 as final answer or not spoiled. or M1 for $\times 1.03$ twice oe
(c)	1.5	2	M1 for $\frac{30 \times r \times 5}{100}=2.25$ oe or for $2.25 \div 5$ then $\div 30 \times 100$
2 (a)	5.83 (5.830 to 5.831)	2	M1 for $3^{2}+5^{2}$ Any other method must be complete
(b)	113. 6 (114 or 113.5 to 113.6) www 4	4	M2 for $(\cos C)=\frac{5^{2}+8^{2}-11^{2}}{2 \times 5 \times 8}$ or M1 for correct implicit expression A2 (A1 for -0.4 or $-\frac{2}{5}$)
(c)	25.8 (25.77 to 25.85) cao www 3	3	M1 for $0.5 \times 5 \times 8 \times \sin$ (their angle C) o.e must be full method e.g. Hero's formula. M1 for $0.5 \times 3 \times 5$ oe

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2010	0580	43

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2010	0580	43

$5 \text { (a) (i) }$ (ii) (iii)	Similar 2.7 3.15	1 2 2	Accept enlargement M1 for $\frac{P Q}{3.6}=\frac{3}{4} \quad$ oe M1 for $\left(\frac{3}{4}\right)^{2}$ or $\left(\frac{4}{3}\right)^{2}$ o.e seen If $\frac{1}{2} a b \sin C$ used or base and height used then must be full method for M1
(b) (i) (ii) (iii) (iv)	$\begin{aligned} & 29 \\ & 61 \mathrm{ft} \\ & 61 \mathrm{ft} \\ & 119 \mathrm{ft} \end{aligned}$	1 ft 1 ft 1 ft	ft 90 - their (i) if (i) is acute ft their (ii) if their (ii) is acute, but can recover ft 180 - their (iii)
(c) (i) (ii)	$\begin{aligned} & 20 \\ & 110 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	M1 for adding 6 angles going up 4 each time and M1 (indep) for 720 seen and not spoiled ($6 A+60=720$ o.e. scores M2)
6 (a)	$-2.5,-2,2,2.5$	2	B1 for 3 correct
(b)	4 points correct ft Correct shape curve through at least 9 points over full domain Two branches either side of y-axis and not touching it	Plft C1ft B1	ft only if correct shape and isw any curve outside domain (including crossing y-axis) Independent
(c)	$-1,0,1$	2	B1 for two correct, each extra - 1
(d)	$(x)<-1$ and $(x)>1$ as final answer	2	B1 B1 Condone inclusive inequality, allow in words, condone inclusion of -4 and +4 as limits. $1<x<-1$ or $-1>x>1$ SC1 $-1<x<1$ scores $\mathbf{0}$. Each extra -1 if more than two answers.
(e) (i)	Correct ruled line though $(-2,-3)$ to $(1,3)$	2	SC1 for ruled line gradient 2 or y-intercept 1 from $x=-2$ to 1 or correct line but short or good freehand full line.
(ii)	Some reasonable indication on graph for both points	1	e.g. points of intersection marked, or, lines drawn from point of intersection to x-axis etc
(iii)	$\begin{aligned} & x^{2}+1=2 x^{2}+x \text { oe then } x^{2}+x-1=0 \\ & \text { or } \frac{1}{x}=x+1 \text { then } 1=x^{2}+x \\ & \text { then } x^{2}+x-1=0 \\ & 1,-1 \end{aligned}$	3	E2 Must be intermediate step before answer no errors or omissions or E1 Either no intermediate step or one error or omission. B1

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2010	0580	43

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
\[
7 \text { (a) }
\] \\
(b) (i) \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& (\text { Mode })=11 \\
\& (\text { Median })=12.5 \\
\& (\text { Mean })=12.8(0 \ldots .) \\
\& 15,27,30, \ldots \ldots . \\
\& 9.67(9.674 \text { to } 9.675) \text { cao www } 4
\end{aligned}
\] \& 1
2
3

3

4 \& | B1 |
| :--- |
| M1 for evidence of finding mid-value e.g. $(126+1) \div 2$ oe, (condone $126 \div 2$) |
| M1 for correct use of $\Sigma f x$ (allow one slip) |
| M1 (dependent) for $\div 126$ |
| B1 B1 B1 |
| M1 for mid-values, condone one error or slip M1 for use of $\Sigma f x$, with x 's anywhere in intervals and their frequencies (allow one slip) M1 (dependent on second M) for $\div 126$ (or their Σf) isw any conversion into hours and minutes |

\hline 8 (a) \& $40 \div 10$ and $12 \div 6$ (or $12 \div 3$) and $6 \div 3$ (or $6 \div 6$) oe $4 \times 2 \times 2=16$ reducing (seen) to 16 \& E2 \& | M1 Allow drawing for M1 but must see reaching 16 for E2 |
| :--- |
| Reaching 16 without any errors or omissions SC1 for $\frac{40 \times 12 \times 6}{\text { their (b) }}$ even if $=16$ or $4 \times 2 \times 2=16$ or $4 \times 4 \times 1=16$ without other working |

\hline (b) \& 180 \& 1 \&

\hline | (c) (i) |
| :--- |
| (ii) | \& | 23640 (allow 23 600) |
| :--- |
| 23.64 (or 23.6) ft | \& 2

$1 f t$ \& M1 for their $180 \times 8 \times 16+600$ ft their (i) $\div 1000$

\hline | (d) (i) |
| :--- |
| (ii) | \& \[

$$
\begin{aligned}
& 216 \\
& 8.64
\end{aligned}
$$
\] \& 2

3 \& | M1 for $(10 \times 6+10 \times 3+6 \times 3) \times 2$ oe |
| :--- |
| M1 for their (i) $\times 16 \times 25$ |
| M1 (indep) for $\div 100^{2}$ |
| Figs 864 imply M1 only |

\hline (e) \& 75.3 (75.26 to 75.33....) \& 3 \& M1 for $\frac{4}{3} \pi \times 0.5^{3}$ (0.5235 ..) Implied also by 104.7.... then M1 (dep) for their (b) $-200 \times$ their $\frac{4}{3} \pi \times 0.5^{3}$ must be giving positive answer

\hline (f) \& 0.842 (0.8419-0.8421) \& 3 \& M1 for $\left(\frac{4}{3} \pi r^{3}\right)=50 \div 20$ then M1 for $\frac{50 \div 20}{\frac{4}{3} \pi}(0.5966$ to 0.5972$)$ After 0 scored SC1 for $\sqrt[3]{\frac{50}{\frac{4}{3} \pi}}$ (implied by 2.29)

\hline
\end{tabular}

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2010	0580	43

9 (a)	$\begin{aligned} & 8 w+2 j=12 \\ & 12 w+18 j=45 \end{aligned}$ Correctly eliminating one variable Water 1.05, Juice 1.8(0)	5	B1 condone consistent use of other variables B1 M1 allow one numerical slip A1 A1 If A0, SC1 for 1.80, 1.05
(b) (i)	$\frac{2}{y}+\frac{4}{y-4}=\frac{40}{60} \text { oe }$	M2	M2 If M0, SC1 for $\frac{2}{y}$ or $\frac{4}{y-4}$
	$\frac{2 \times 3(y-4)}{3 y(y-4)}+\frac{3 \times 4 y}{3 y(y-4)}=\frac{2 y(y-4)}{3 y(y-4)}$ oe or better $\begin{array}{lc} 6(y-4)+12 y=2 y(y-4) & \text { oe } \\ 6 y-24+12 y=2 y^{2}-8 y & \text { oe } \\ 0=2 y^{2}-26 y+24 & \\ y^{2}-13 y+12=0 & \end{array}$	E2	E2 Correct conclusion reached without any errors or omissions including at least 3 intermediate steps. or E1 if any one slip, error or omission that is recovered or correct with only two steps.
(ii)	$(y-1)(y-12)$	2	SC1 for $(y+a)(y+b)$ where $a b=12$ or $a+b=-13$
(iii)	$1,12 \mathrm{ft}$	1 ft	Only ft SC1 but can recover to correct answer with new working or if (ii) not attempted
(iv)	8 ft	1 ft	ft a positive root -4 if positive answer
(c)	$\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-4)}}{2(1)}$	2	B1 for $\sqrt{(-1)^{2}-4(1)(-4)}$ or better If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ then $\mathbf{B 1}$ for $-(-1)$ and 2(1) or better Brackets and full line may be implied later
	-1.56, 2.56	2	B1 B1 If B0, SC1 for -1.6 or -1.562 to -1.561 and 2.6 or 2.561 to 2.562
10 (a)	Dots all correctly placed in Diagram 4	1	
(b)	Column 4 16, 25, 16, 41 Column 5 25, 41, 20, 61 Column $n: n^{2}, \quad 4 n, \quad n^{2}+(n+1)^{2}$ oe	7	B2 or B1 for three correct B2 or B1 for three correct B1 B1 B1 oe likely to be $(n-1)^{2}+n^{2}+4 n$ or $2 n^{2}+2 n+1$ After any correct answer for column n, apply isw
(c)(i)	79601 cao	1	
(ii)	800 ft	1 ft	ft their $4 n$ linear expression only
(d)	12 cao	1	

