UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

0580 MATHEMATICS

0580/42

Paper 42 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2010	0580	42

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case

www without wrong working

Qu.	Answers	Mark	Part Marks
1 (a)	$240 \div 8 \times 3 \text{ or } 240 \div 8 \times 5 \text{ or } \frac{3}{8} \text{ of } 240$	1	Accept reverse e.g. 90 : 150 = 3 : 5 and 90 + 150 = 240
	or $\frac{5}{8}$ of 240 oe		
(b) (i)	5 www 2	2	M1 for $\frac{100 \times 9}{90 \times 2}$ oe
(ii)	165 www 2	2	M1 for $99 \div 0.6$ oe
(c)	162.24 final answer cao	2	M1 for $150 \times 1.04 \times 1.04$ oe implied by answer 162.2
(d) (i)	58.67 final answer cao	3	SC2 for 58.7 or M1 for $\frac{150 \times 4 \times 20}{100}$ oe (120) then M1 (dependent on the first M1)
			328.67 – 150 – their 120 oe Answers of 208.67 or 208.7 imply first M1
(ii)	219 (.1) www 2	2	M1 for $\frac{328.67}{150} \times 100$ oe
2 (a) (i)	$\begin{pmatrix} 15\\ 8 \end{pmatrix}$	2	B1 each component
(ii)	17 www 2	2 ft	ft their 15 and their 8. M1 for (their 15) ² + (their 8) ²
(b) (i)	$\frac{1}{2}\mathbf{v} - \frac{1}{2}\mathbf{c} \mathbf{or} \frac{1}{2}(\mathbf{v} - \mathbf{c}) \text{cao}$	2	M1 for $\frac{1}{2}\overrightarrow{CV}$ soi
(ii)	$\frac{1}{2}\mathbf{c} + \frac{1}{2}\mathbf{v}$ again allowing brackets cao	2	M1 for \overrightarrow{OM} e.g. $\overrightarrow{OC} + \overrightarrow{CM}$ or better seen or v – their (i) or c + their (i)
(iii)	$\frac{1}{6}\mathbf{v} - \frac{1}{2}\mathbf{c}$ again allowing brackets cao	2	M1 for any correct route e.g. $\overrightarrow{MV} + \overrightarrow{VL}$ or their (i) $-\frac{1}{3}$ v
			or $\frac{2}{3}$ v – their (b)(ii)

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2010	0580	42

3			Throughout this question isw any cancelling or changing to other forms, after correct answer seen. Penalty of -1 for 2 sf decimals or percentages. Do not accept ratio or worded forms.
(a) (i)	$\frac{4}{6}$ oe (0.667)	1	Allow 0.6666 – 0.6667
(ii)	$\frac{3}{6}$ oe	1	
(iii)	$\frac{2}{6}$ oe (0.333)	1	Allow 0.3333
(iv)	$\frac{5}{6}$ oe (0.833)	1	Allow 0.8333
(b) (i)	$\frac{1}{36}$ oe (0.0278)	2	Allow 0.02777 – 0.02778, M1 for $\frac{1}{6} \times \frac{1}{6}$
(ii)	$\frac{6}{36}$ oe (0.167) www 2	2	Allow 0.1666 – 0.1667, M1 for $\frac{3}{6} \times \frac{1}{6} \times 2$ oe
(c) (i) (ii)	$\frac{1}{4}$ oe $\frac{1}{2}$ oe	1	
	2		
(d)	5 (but not from rounding)	2	M1 for repeating $\times \frac{4}{6}$ or e.g. $\left(\frac{2}{3}\right)^n$
4 (a) (i)	Triangle with vertices (-4, 4), (-1, 4), (-1, 6)	2	SC1 for translation $\begin{pmatrix} -7\\k \end{pmatrix}$ or $\begin{pmatrix} k\\3 \end{pmatrix}$
(ii)	Triangle with vertices $(1, -3), (1, -6), (3, -6)$	2	SC1 two correct vertices or 90° anticlockwise about $(0, 0)$
(b) (i)	Reflection only $y = -x$ oe	1 1	Marks independent but must be single transformation to score any marks
(ii)	Stretch only <i>x</i> -axis oe invariant (factor) 3	1 1 1	Marks independent but must be single transformation to score any marks

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2010	0580	42

(c) (i)	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	2	B1 each column
(ii)	$ \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} ft $ $ \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{pmatrix} ft $	2 ft	ft factor in (b)(ii) only if stretch and can recover to correct matrix SC1ft for right-hand column
(iii)	$\begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{pmatrix} \text{ft}$	1 ft	ft $\begin{pmatrix} 1 & 0 \\ 0 & n \end{pmatrix}$ to $\begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{n} \end{pmatrix}$ or $\begin{pmatrix} n & 0 \\ 0 & 1 \end{pmatrix}$ to $\begin{pmatrix} \frac{1}{n} & 0 \\ 0 & 1 \end{pmatrix}$
			$n \neq 0, \pm 1$
			for $\frac{1}{3}$, allow 0.33 or better
5 (a)	$(\cos) \ \frac{180^2 + 115^2 - 90^2}{2 \times 180 \times 115}$	M2	M1 for correct implicit expression $90^2 = \dots$
	24.98 - 24.99	A2	A1 for $(\cos) = 0.9064$
(b) (i)	125(.0) ft	1 ft	ft 150 – their (a)
(ii)	305(.0) ft	1 ft	ft 180 + their (b)(i)
			× / × /
(c)	180sin (54.98 to 55) or 180cos (35 to 35.02) oe or 180sin (360 – their (b)(ii)) or 180cos(their (b)(i) – 90) oe	M2	B1 for 54.98 to 55 or 35 to 35.02 soi in correct position. Provided either angle is acute
	147(.4) cao www 3	A1	
(d)	$\frac{90\sin 30}{\sin 70}$	M2	M1 for $\frac{TR}{\sin 30} = \frac{90}{\sin 70}$ or other correct implicit equation
	47.9 (47.88 – 47.89) cao www 3	A1	
(e)	2 000 000 oe	2	Allow 1 : 2 000 000 as answer. SC1 figs 2 in answer which could be a ratio.
6 (a)	$\frac{4}{3}\pi \times 2.4^3$	M1	Must see method
	57.87 – 57.92 to at least 4 figures	A1	
(b) (i)	14.4, 9.6, 4.8	1, 1, 1	Any order
(ii)	664 (663.5 – 663.6) ft	1 ft	
(iii)	315 or 316 or 317 (315.2 – 316.8) ft	1 ft	ft their (b)(ii) -6×57.9 (only if positive)
(iv)	507 (506.8 – 506.9) ft	2 ft	M1 for $(14.4 \times 9.6 + 14.4 \times 4.8 + 9.6 \times 4.8) \times 2$ or their 3 lengths.

Page			hers' version		Syllabus	Paper
		IGCSE – May/June 2010		0580	42	
	TT • 1					
(c) (i)	or bett $\pi \times 2.4$	t seen or implied as 6×4.8 er $4^2 \times$ their height 20.8 - 521.3) www 3	M1 M1 A1	Indep		
	, i	,		6 + (1, -, -, -, -, -, -, -, -, -, -, -, -, -,	(x (57.0)1; f	
(ii)		173 (173.2 – 174.1) ft	1ft		$6 \times '57.9'$ only if	-
(iii)	470-4	471 cao www 3	3		$ \propto 2.4^2 (36.17 \text{ to } 36.17 \text{ to } 36.1$	
7 (a)	17.5 +	$.5 + 15 \times 7.5 + 23 \times 12.5 + 30 \times 40 \times 22.5 + 35 \times 27.5 + 25 \times 20 \times 37.5$	M1 M1	mid-values any three soi Use of Σfx dep on x anywhere in each interval (including lower bound) – allow 2 slips or omissions		
	÷200 21.9 v	www 4	M1 A1	Depend on sec	cond M	
(b)	155, 1	80	1			
(c)	Reason	ts plotted ft, ignoring (0, 0) nable <u>increasing</u> curve or on through their 8 points	P3ft C1ft		plotted, P1ft for any form of the plotted of the	
(d)		horizontal or vertical line at cm long at $y = 50$ on the curve	1			
(e) (i)	22 - 22	3	1			
(ii)	13.5 -	14.5	1			
(iii)	25.5 -	26.5	1			
(iv)	136 -	140 must be integer	2	SC1 for 60 – 6	54 seen and must b	e integer
8 (a)		$p^2 - 5$ oe final answer	2	SC1 for $(p + q)$		-
(b)	6x + 9(x - 3) = 51 or better		В3	B2 for 6 <i>x</i> + 9(or B1 for 6 <i>x</i> or	/	
	5.2(0)	final answer	B1	5.2(0) ww is B	· · ·	
(c)		c = 52 oe c = 139 oe	B1 B1	Condone consistent use of other variables or M3 for $3a + 2(52 - a) = 139$ or $3(52 - c) + 2c = 139$ o.e.		variables
	35	tly eliminating a or c .	M1 A1	Allow one numerical slip. If A0, SC1 for 17, 35		
	17		A1			

© UCLES 2010

www.XtremePapers.net

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2010	0580	42

		L	
9 (a) (i)	Similar	1	Allow enlargement
(ii)	4.5	2	M1 for $\frac{AX}{3} = \frac{9}{6}$ oe
(iii)	13.5 cao	2	M1 for $\left(\frac{3}{2}\right)^2$ or $\left(\frac{2}{3}\right)^2$ or e.g. using base and
(iv)	180 - x - y oe 180 - x oe	B1 B1	height but other methods must be complete
	06	1	
(b) (i)	96	1	
(ii)	48 ft	1 ft	ft 0.5 their (b)(i)
(iii)	97 ft	1 ft	ft 145 – their (b)(ii)
(iv)	35	1	
(c)	$20n = 360 \text{ oe or } \frac{180(n-2)}{n} = 160 \text{ oe}$ or $180(n-2) = 8 \times 360 \text{ oe}$ or $8\left(\frac{360}{n}\right) = 180 - \frac{360}{n}$	M2	M1 for $9e = 180$ oe allow diagram to show this if reasonably clear or M1 for 8×360 or $\frac{8 \times 360}{n}$
	18 www 3	A1	
10 (a)	Pentagon Octagon 20	1 1, 1	
(b)(i)	35	1	
(ii)	54	1	
(11)		-	
(c)(i)	p = 2, q = 3	3	M1 for substituting a value of <i>n</i> e.g.
			$\frac{1}{n}4(4-q) = 2 n \ge 3$
			<i>p</i> or M1 for number of diagonals from one vertex is $n - 3$ (allow in words) and B1 for one correct value. If 0, SC1 for
			$\frac{n}{2}(n-3)$ seen.
(ii)	4850 ft	1 ft	ft their (c)(i) allow only if ft calculates to a positive integer.
(iii)	20 cao	2	SC1 for answer of 17 or M1 for their formula = 170
(d)	31 cao	1	