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The overall response to the paper was good. Low total scores were usually an accumulation of 
fragments from a range of questions, rather than an inability to access anything on the more difficult 
topics. At the other extreme, there were some impressive scripts that showed a deep understanding of 
the theory involved, often using sophisticated mathematical language to communicate concise 
answers clearly. Most students followed the rubric and attempted to show sufficient working to justify 
their answers but the quality of notation and detail varied considerably. Some students misunderstand 
the instruction ‘show’. Show questions require every step to be seen, so that examiners can be assured 
that what was required to be proved has indeed been proved. 
 
 
Report on Individual Questions 
 

          Question 1 

 
This was a straight forward introduction to the paper with many students scoring full marks. Those 
who lost marks usually muddled the use of   in their formulae or converted to degrees incorrectly. 
 
Question 2 
 
This question was accessible to most students with many scoring some marks in each part of this 
question. 
The common error in part (a) was to give two correct equations but neither in the form as asked for in 
the question and so the final A mark was withheld. 
Many students were able to follow through their answers in part (a) to give correct inequalities. A few 
mixed up which way round the inequality should be. The most common error was to give an answer 
of 0y   rather than x   0 

 
Question 3 
 
The majority of students were able to score full marks on this question as they realised that to find two 
possible lengths of AC required first finding two angles. Students that did not score full marks usually 
only found one angle and therefore only one length of AC was found.  
 
Question 4 
 
Part (a) was answered well by the majority of students and sufficient working was usually seen to 
show that h = 9 
Part (b) was answered well with many students scoring full marks. When errors were made it was 

usually when applying 145BX   into the cosine rule, usually the numerator was correct but the 
denominator was written as 2 145 145    



Part (c) was not answered as well as the previous parts. Those students that knew that they had to 
bisect BC to make a right angled triangle often scored full marks from a variety of methods. For those 
that did not the common error was to calculate angle ABX. 
 
Question 5 
 
This question was answered well by the vast majority of students. 
In part (a), sufficient working was usually seen to award both marks.  
Part (b) was answered well and the majority of students used the result given to obtain a correct 
answer and so scored full marks. Occasionally arithmetic errors caused students to lose marks. 
In part (c), sufficient working was usually seen to award both marks.  
Part (d) was generally answered well by many students and many scored full marks. Errors usually 
occurred when finding the product of the roots and a few students failed to use the given information 
to help them answer this question. Many students knew that they had to use 

2 sum product 0x x    and so the M mark was often awarded. Only a few students failed to set 
their answer as an equation = 0 
 
Question 6 
 
This question caused some students difficulty. 
In part (a) whilst many correct solutions were seen too many students were unable to show sufficient 

correct marking for these marks to be awarded. Some students started with 21

3
V r h  and then 

stated that 
1

3
r h  without working and substituted into V and so scored 0 marks. 

In part (b) whilst many correct solution were seen the notation used was varied. Some students could 

find 
d

d

V

h
 but then failed to use the chain rule. As we allowed the use of 0.9  leading to an answer of 

0.597  many students scored full marks. 
 
Question 7 
 
Many good solutions were seen to this question, with many students scoring full marks in multiple 
parts of the question. 
In part (a), many students were able to show sufficient working to score full marks. Both methods as 
shown in the mark scheme were equally seen. For those that did not score any marks then they usually 

failed to use 
6

3
3

ar
r

ar
   

In part (b), many students were able to score full marks. Both methods as shown in the mark scheme 
were equally seen. For those students that did not score full marks they usually scored the first M1 for 

2

3

2

xe
a

e




   

In part (c), many students were able to score full marks and all methods shown in the mark scheme 
were seen. Those students that did not score full marks often scored M1 for use of S . A common 

incorrect answer was 
7

2
p x    

In part (d), many students were able to score full marks and both methods as shown in the mark 
scheme were seen. Those that failed to score full marks usually scored at least three marks and usually 
the final answer mark was withheld for an answer of 5 or 5.47 



 
Question 8 
 
Parts (a) and (b) were answered well by many students but part (c) caused more issues than previous 
parts. 
In part (a), virtually all students were able to score this mark as they stated k = 2 
In part (b), many students scored full marks. For those that did not the common error was to substitute 
k = 2 and proceed no further. Those that used the alternative version in the mark scheme were usually 
more successful in scoring 2 marks. 
In part (c), most students were able to score at least 3 or 4 marks. Usually students were able to score 

marks for 
1

sin 2
2

   and then 0.262,1.31   or their equivalence. Some scored an extra mark for 

tan 2 3  . Those that did not score full marks usually quoted that tan 2 3  could not be solved 
and proceeded no further. 
 
Question 9 
 
In part (a), better students quickly found correct values for p and for q but others struggled with this 

part of the question.  It was common to see 2p   as well as mistakes such as
1

2
q    

In part (b), the binomial expansion was applied well to gain the method mark in part (b) and the 
simplification of coefficients was done carefully. Those who started with the correct expression 

frequently scored both accurate marks and those that used 2p   and 
1

2
q  . Often gained the first 

A1 mark. 
In part (c), many students scored 2 out of 3 marks. Even when they used the incorrect values of p and 
q they ended up with a = 3.  
In part (d), students generally gained a correct answer from correct working and scored full marks 

However if 
1

2,  
2

p q  was used then 
3

16
a  and 

13

8
b   which substituted into 3 3a b gave an 

answer of 
69

16
  but scores A0 

 
Question 10 
 
The first two marks in part (a) were generally scored by the majority of students – good integration 
including a constant was seen. Many students then correctly substituted the given points and formed 
two equations in c and p and then solved simultaneously to achieve the given answer. A small 
minority of students made slight errors which were then later corrected and so lost the final A mark. 
In part (b), those students who equated the curve and the line to find that x = 0 and x = 2 generally 
went onto score full marks. Some students missed this and invented values for the limits usually using 
–1 and 2 which were the x coordinates of the two points given in the question. The majority integrated 
correctly the difference of the two functions. A few students lost the final mark due to numerical 
errors when substituting in the limits. 
 
Question 11 
 
In part (a), many students were able to write correct equations of the asymptotes to C. The common 
error was to mix up which asymptote was parallel to which axis. Students should be encouraged to 
mark sure they clearly label which part of the question they are attempting to avoid any ambiguity. 



In part (b), the majority of students were able to find the coordinates of the points where C crossed the 

coordinate axes. Any errors usually resulted from poor algebra e.g. 
3

3 2 0
2

x x      

In part (c), many students were able to sketch the required curve and it was pleasing to see that many 
students followed the instruction ‘showing clearly the asymptotes and the coordinates of the points 
where C crosses the coordinate axes. A few students lost the first B mark as their sketch had only one 
curve rather than two. The curve they drew usually was the one that crossed the coordinate axes and 
so the 3rd B mark could be awarded. 
Part (d) of the question caused students more problems and only the better students scored full marks. 
Many students scored the first mark as they equated the curve and the line. Some students simply 
stopped at this point. For those that continued their attempt was often spoilt by numerical errors in 
their work. Some students failed to realise that as there were no intersection between the line and the 
curve that 2 4 0b ac   was required to from a three term quadratic and so progressed no further. 
Students should be encouraged to show their method when solving quadratics as often answers from 
the calculator appeared. The question stated ‘show algebraically’ and such the method for solving the 
quadratic was expected. 
  



  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pearson Education Limited. Registered company number 872828  
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom 


