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The overall response to the paper was good. Low total scores were usually an accumulation of 
fragments from a range of questions, rather than an inability to access anything on the more difficult 
topics. At the other extreme, there were some impressive scripts that showed a deep understanding of 
the theory involved, often using sophisticated mathematical language to communicate concise 
answers clearly. Most students followed the rubric and attempted to show sufficient working to justify 
their answers but the quality of notation and detail varied considerably. Some students misunderstand 
the instruction ‘show’. Show questions require every step to be seen, so that examiners can be assured 
that what was required to be proved has indeed been proved. 

 
          Report on Individual Questions 
 
          Question 1 
 

It was clear that students knew the method to rationalise such a surd and so this question was 
answered completely correctly by the majority of students. Some students incorrectly multiplied 

numerator and denominator by  2 3  . The students that took the alternative approach usually did 

so with success, forming two linear equations and solving simultaneously to achieve 4a   and 
6b  . 

Question 2 

Overall, the majority of students did this question successfully and got full marks with a few 
exceptions. 

In part (a), some lost 1 mark as they wrote  2
11 2x   instead of  2

11 2x    

In part (b), some students used differentiation to find maximum value and even students that in part 
(a) didn’t get full marks, often got both marks in this part. Students should be encouraged to clearly 
label question parts so that there is no ambiguity as to their answers to each part. 

Question 3 

In part (a), most students recognised that they needed to differentiate using the product rule and in 

most cases were generally successful. The most common error was to have 2 2( 1)xe x   instead of 
2 22 ( 1)xe x   

In part (b), most students understood the process for finding the equation of a straight line and were 
able to use the derivative in (a) to find a gradient of the tangent. As the required form for the line was 
y mx c   the vast majority of students gave a correct answer. 



Question 4 

In part (a), most students recognised they needed to differentiate and then use the given information to 
set up two linear equations in a and b. The majority went on to solve these correctly to obtain a fully 
correct solution. A few students made arithmetic errors when solving the simultaneous equations and 
therefore ended up with incorrect values for a and b. The most common error was to set f(2) = 5 rather 
than f(2) = 0 

In part (b), the majority of students were able to divide f(x) by x – 2 to obtain a 3 term quadratic, 
factorise and get all three terms correct. Even students that had incorrect values of a and b were able 
to score 2 marks. A few students lost mark here as they failed to answer the question ‘Express f(x) as 
a product of linear factors’ and used their calculator to give the answer to part (c) 

In part (c) the majority of students gave correct answers. The follow through allowed for students who 
had previously lost marks to gain full marks here. 

Question 5 

In part (a), a variety of methods were seen, often scoring both marks. However as this was a ‘show 
that’ question some students lost marks as show questions require every step to be seen. 

In part (b), many different approaches to the solution of this problem were offered, some succinct and 
elegant others rather more convoluted, but this question was a good source of marks for most students 
as eventually most students could be seen to use the required laws of logarithms in some part of their 
solution. The more able students who had a good grasp of the rules of logarithms and that were well 
prepared usually manipulated the logarithms correctly and generally reached the correct three term 
quadratic, and then most went on to find the exact solutions of the equation. Less able students found 

this question challenging and failed to deal with the 
1

log 16x  term and such made little progress in 
4

answering this question. Basic algebraic errors also let some students down 

Question 6 

Part (a) of this question was answered well by the vast majority of students. The majority successfully 
found the required values for the table but a small minority made arithmetic errors and some failed to 
give their answers to the accuracy specified in the question.  

In part (b), the plotting of the points was generally accurate. Only occasionally, the points were 
plotted incorrectly but the curve was generally accurate and smooth. 

In part (c), only the less able students were unable to obtain the required line y = 3x – 6. Most 
students who successfully deduced the correct line went on to easily find the required value of x, but 
a significant number gave a value that was 'too accurate' (the question specified one decimal place) - 
perhaps suggesting they had found the value on their graphic calculators, and thus lost the final A 
mark unless the correct rounded value was seen. 

Question 7 

In part (a)(i), many students were awarded both marks. However, like Q5, as this was a ‘show that’ 
question some students lost marks as show questions require every step to be seen. 

In part (a)(ii), students were able to use the given answer to correctly find the value of a and many 
scored both marks. 



In part (b), again students were able to use the given answer to correctly find the value of x and many 
scored both marks. 

Part (c) of this question was not done as well as the previous parts of this question and many 
students found this part a challenge, possibly due to lack of familiarity with the notation. The less 
confident students seemed to struggle to know how to approach this type of problem. Some students 
used the formulae for a GP. The first 2 marks were accessible to the majority of students but only the 

more able students were able to use  2 ( 1)
2

n
a n d   correctly when dealing with 1nS 

Question 8 

This question proved challenging for many students. Most knew that differentiation was needed at 
some point and a score of 1 only was not unusual for the weaker students. Some students knew 

integration was required and went on to correctly find 
2 35 2

5 3
2 3

t t
s t     but then failed to 

realise that they needed to solve 23 5 2 0t t    to obtain a value of t to substitute into s. Others 

realised that they needed to solve 23 5 2 0t t    to obtain a value of t but did not have the required 
equation to find the maximum value. Only the well prepared students were able to do both. Once 
obtaining a correct answer some students then failed to show that it was a maximum, some forgot to 
do this part, whilst others found an incorrect expression for the 2nd derivative. 

Question 9 

In part (a), the majority of students scored both marks as it was straight forward and they knew how to 
find the values of a and b. 

In part (b), the majority of students scored the first 2 marks as they could state the gradient of 1l  and

therefore the gradient of 2l . Many then were able to either use the gradient of the perpendicular to

obtain an equation or used 6 5PR   to obtain an equation. Only the better students were able to 
find both equations. Once both equations were found many of these students could go onto solve 
simultaneously to find the possible value of e and f. A few students mixed up their pairings or wrote 
coordinates in the form (f, e). 

For those students that struggled with part (b) it appeared that they gave up and left out parts (c) and 
(d) 

Only the better students scored marks in part (c). Some scored 1 mark for using Pythagoras’ to find 

PQ  . A few used 
1

Area
2

a c e a

b d f b
  but  a few students omitted the 

1

2
 . Some students 

failed to realise that e < 0 and used the incorrect value of (e, f) 

Part (e) was only answered correctly by the best students. Often this was left blank or an incorrect 
method for finding the coordinates of c were given. Many failed to realise that RQ was the diameter 
and even those that did failed to realise that e < 0 and used the incorrect value of (e, f) 



Question 10 

In part (a), most students were able to get full marks here. Only a small minority of students made 
mistakes in the addition of the direction vectors. 

In part (b), students generally knew what was required here and were successful in obtaining a 

relationship between the vectors AB


 and OC


 using vector addition or subtraction. Many students
were able to state the conclusion as a relationship between two vectors. 

Part (c) divided students into those that knew how to use a vector method to find the ratio and those 
that did not. Of those that did know how to use a vector method a variety of correct methods were 
used with most succeeding in getting a fully correct final answer. Those that did not know how to use 

a vector method were limited to scoring the first B1 for AC


= 5b. Generally these students failed to
proceed any further as they failed to write any further vector which included an unknown multiple of 
a vector. 

Question 11 

Part (a) was answered well by the majority of students and sufficient working was usually seen to 

show that 2 2b a    

In part (b) many students made the connection between part (a) the solution to this question. Those 
that did usually were able to score well in this question. Students seemed well prepared to find a 
volume when rotated around the x-axis and even though this question was asked in reverse many 
students scored full marks. For those students that failed to make the connection between this question 
and part (a) this proved to be a difficult question and many were unable to score more than 2 marks. 
There were many attempts to combine the two functions into one integration, but many left their 

answer in terms of 2b , with many students then not knowing how to proceed any further. A few tried 

to substitute for 2b later in their solution but was then spoilt by poor algebra leading to incorrect 
answers. 
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