Please check the examination d	etails below before enter	ing your candidate information
Candidate surname		Other names
Pearson Edexcel International GCSE	Centre Number	Candidate Number
Thursday 20	June 20	119
Morning (Time: 2 hours)	Paper Re	ference 4PM1/02
Further Pure N Paper 2	/lathemat	tics

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{3}\pi r^3$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity,
$$S_{\infty} = \frac{a}{1-r} |r| < 1$$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x) \right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all ELEVEN questions.

Write your answers in the spaces provided.

	You must write down all the stages in your working.										
1	Referred to a fixed origin O , the point A has position vector $(4\mathbf{i} + 3\mathbf{j})$ and the point B has position vector $(\mathbf{i} + 7\mathbf{j})$										
	(a) Find \overrightarrow{AB} as a simplified expression in terms of i and j	(2)									
	(b) Find a unit vector that is parallel to \overrightarrow{AB}										
	(b) I find a differ vector that is paramer to IID	(2)									

_	(Total for Question 1 is 4 mar	KS)									

2	2 Oil is leaking from a pipe and forms a circular pool on a horizontal surface. The area of the surface of the pool is increasing at a constant rate of 8 cm²/s. Find, in cm/s to 3 significant figures, the rate at which the radius of the pool is increasing when the area of the pool is 50 cm²								
	•	(6)							

3	A particle P moves in a straight line. At time t seconds, the velocity, v m/s, of P is given	by
	$v = t^2 - 4t + 7$	
	(a) Find the acceleration of P , in m/s ² , when $t = 3$	
		(2)
	(b) Find the distance, in m, that P travels in the interval $0 \le t \le 6$	(4)

In triangle ABC , $AB = 5x$ cm, $BC = (3x - 1)$ cm, $AC = (2x + 5)$ cm	and angle $ABC = 60^{\circ}$
Find, to 3 significant figures, the value of x .	(5)

5 Use algebra to solve the equations		
	xy = 36	
	xy + x + 2y = 53	
		(6)

(Total for Question 5 is 6 marks)

- 6 (a) Given that $y = (4x 3)e^{2x}$
 - (i) find $\frac{dy}{dx}$

(3)

(ii) show that $(4x-3)\frac{dy}{dx} = (8x-2)y$

(2)

(b) Differentiate $\frac{\sin 5x}{(x-3)^2}$ with respect to x

(3)

|
 | |
|------|--|
|
 | |
|
 | |
|
 | |

7 The sum of the first n terms of an arithmetic series is A_n where

$$A_n = \sum_{r=1}^{n} (4r + 5)$$

- (a) For this arithmetic series, find
 - (i) the first term,
 - (ii) the common difference.

(2)

The sum of the first n terms of a geometric series is G_n where

$$G_n = \sum_{r=1}^n 4(3)^{r-1}$$

- (b) For this geometric series, find
 - (i) the first term,
 - (ii) the common ratio.

(2)

(c) Find the value of *n* for which $A_{14} - 6 = G_n$

(5)

14

Question 7 continued	

8	The point A has coordinates coordinates $(4, 2)$.	(2, 6), the poin	nt B has coordina	ates $(6, 8)$ and the point C has							
	(a) Find the exact length of										
) 1D	(ii) PC	(;;;) AC							
	(1) AB	(ii) BC	(iii) AC	(4)						
	(b) Find the size of each ang	le of triangle	ABC in degrees.								
					(3)						
	The points A , B and C lie on	a circle with	centre P.								
	(c) Find the coordinates of P	2.			(2)						
	(d) Find the exact length of t	he radius of th	he circle in the fo	orm \sqrt{a} , where a is an intege							
	(d) I find the exact length of t	ile radius of ti	ne enere in the re	om va, where a is an integer	(2)						

Question 8 continued	

(Total for Question 8 is 11 marks)

- 9 The curve C, with equation y = f(x), passes through the point with coordinates $\left(-2, -\frac{28}{3}\right)$ Given that $f'(x) = x^3 - x^2 - 4x + 4$
 - (a) show that C passes through the origin.

(4)

- (b) (i) Show that C has a minimum point at x = 2 and a maximum point at x = 1
 - (ii) Find the exact value of the y coordinate at each of these points.

(7)

The curve has another turning point at A.

- (c) (i) Find the coordinates of A.
 - (ii) Determine the nature of this turning point.

(3)

Question 9 continued	

- 10 The roots of the equation $x^2 + 3x 5 = 0$ are α and β .
 - (a) Without solving the equation, find
 - (i) the value of $\alpha^2 + \beta^2$
 - (ii) the value of $\alpha^4 + \beta^4$

(5)

Given that $\alpha > \beta$ and without solving the equation

(b) show that $\alpha - \beta = \sqrt{29}$

(2)

(c) Factorise $\alpha^4 - \beta^4$ completely.

(3)

(d) Hence find the exact value of $\alpha^4 - \beta^4$

(2)

Given that $\beta^4 = p + q\sqrt{29}$ where p and q are positive constants

(e) find the value of p and the value of q.

(3)

.....

Question 10 continued

(Total for Question 10 is 15 marks)

Diagram **NOT** accurately drawn

Figure 1

Figure 1 shows a right pyramid with vertex V and square base, ABCD, of side 16 cm.

The size of angle AVC is 90°

(a) Show that the height of the pyramid is $8\sqrt{2}$ cm.

(4)

(b) Find, in cm, the length of VA.

(3)

(c) Find, in cm, the exact length of the perpendicular from D onto $V\!A$.

(3)

Find, in degrees to one decimal place, the size of

(d) the angle between the plane *VAB* and the base *ABCD*,

(3)

(e) the obtuse angle between the plane $V\!AB$ and the plane $V\!AD$.

(3)

