Please check the examination d	etails below before enter	ring your candidate information
Candidate surname		Other names
Pearson Edexcel International GCSE	Centre Number	Candidate Number
Thursday 20	June 20)19
Morning (Time: 2 hours)	Paper Re	eference 4PM1/02R
Further Pure N Paper 2R	/lathemat	tics
Calculators may be used.		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{3}\pi r^3$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity,
$$S_{\infty} = \frac{a}{1-r} |r| < 1$$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

1

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

$$f(x) = (x-3)[x^2 + (p-2)x + q]$$

Given that f(0) = -12

(a) find the value of q.

(2)

(b) Find the range of values of p for which the cubic equation f(x) = 0 has only one real root.

(5)

(Total for Question 1 is 7 marks)

Figure 1 shows part of the curve S with equation $y = \frac{ax + b}{x + c}$ where a, b and c are integers.

The asymptote to S that is parallel to the x-axis has equation y = -2

The asymptote to S that is parallel to the y-axis has equation x = -3

The curve crosses the x-axis at the point with coordinates (4, 0)

The curve crosses the y-axis at the point with coordinates (0, p) where p is a rational number.

Find

- (i) the value of a,
- (ii) the value of b,
- (iii) the value of c,
- (iv) the value of p.

(4)

(6)

3

Figure 2

Figure 2 shows a solid right circular cylindrical metal rod.

The diameter of the rod is x cm and the length of the rod is 10x cm.

The rod is being heated so that the length of the rod is increasing at a rate of 0.005 cm/s.

Find the rate of increase, in cm³/s to 2 significant figures, of the volume of the rod when x = 3

4	A particle P moves along the x-axis. At time t seconds ($t \ge 0$) the acceleration, $a \text{ m/s}^2$, of P is given by $a = 6t - 12$	
	When $t = 0$, P is at rest at the origin.	
	(a) Find the velocity of P when $t = 2$	
		(3)
	At time T seconds, $T > 0$, P is instantaneously at rest.	
	(b) Find the value of T.	(2)
	(c) Find the distance travelled by P in the first 8 seconds of its motion.	
		(3)

5	(a)	On the	grid	opposite,	draw the	graphs	of the	lines	with ϵ	equations

$$2x + 3y = 24$$
 $y = 2x$ $3y = 2x - 12$

(3)

(b) Show, by shading on the grid, the region R defined by the inequalities

$$2x + 3y \leqslant 24$$
 $y \leqslant 2x$ $3y \geqslant 2x - 12$ $y \geqslant 0$

(1)

For all points in R, with coordinates (x, y)

$$F = 2x + 5y$$

(c) Find the greatest value of <i>I</i>	F
---	---

(3)

Question 5 continued 12 -10-8 -2 0 10 12 14 x Turn over for a spare grid if you need to redraw your graphs.

Question 5 continued

Question 5 continued

Only use this grid if you need to redraw your graphs.

(Total for Question 5 is 7 marks)

6	Given that $\sqrt{9-x}$ can be expressed in the form $p(1+qx)^{\frac{1}{2}}$ where p and q are constant	nts
	(a) find the value of p and the value of q .	(2)
	(b) Hence expand $\sqrt{9-x}$ in ascending powers of x up to and including the term in x^3	(2)
	expressing each coefficient as an exact fraction in its lowest terms.	(3)
	Using the expansion you found in part (b) with a suitable value of x ,	
	(c) find an estimate to 5 decimal places for the value of $\sqrt{\frac{31}{4}}$	(3)

Question 6 continued

7	The <i>n</i> th term of a geometric series G is u_n
	T1. C. + 4 C

The first term of G is a and the common ratio of G is r, where r > 0

Given that $u_3 = 4$ and that $u_7 = 16$

- (a) (i) show that $r = \sqrt{2}$
 - (ii) find the value of a.

(3)

(b) Find the least value of *n* for which $u_n > 500$

(4)

The sum of the first n terms of G is S_n

(c) Find S_{20}

Give your answer in the form $p(1+\sqrt{2})$ where p is an integer.

(4)

Question 7 continued	

Diagram **NOT** accurately drawn

Figure 3

Figure 3 shows a right prism ABCDEF. The cross section BCF of the prism is a triangle.

$$AB = DC = 12 \,\mathrm{cm}$$

$$BC = AD = 8 \,\mathrm{cm}$$

$$BF = AE = 10 \,\mathrm{cm}$$

$$\angle FBC = \angle EAD = 60^{\circ}$$

The point N lies on BC such that FN is perpendicular to BC.

(a) Show that BN = 5 cm.

(2)

(b) Find, in cm to 3 significant figures, the length of EN.

(3)

The midpoint of BF is X and the midpoint of FC is Y.

(c) Find, in degrees to one decimal place, the size of the angle between the plane *ABCD* and the plane *AXYD*.

(2)

(d) Find, in degrees to one decimal place, the size of the angle AYE.

(6)

Question 8 continued

9	The finite region R enclosed by the y -axis, the straight line with equation $y + 2x = 13$ and the curve with equation $y = x^2 - 2$, is defined for points with coordinates (x, y) with $x \ge 0$. The region R is rotated through 360° about the y -axis.		
	Use algebraic integration to find the volume of the solid generated. Give your answer in terms of π .		
		(9)	

10 (a) Use the formula for cos(A + B) to show that $cos 2A = 2 cos^2 A - 1$

(2)

(b) Show that $\cos 4A = 8\cos^4 A - 8\cos^2 A + 1$

(4)

(c) Solve the equation $\cos^2\left(\frac{\theta}{4} + \frac{\pi}{24}\right) \left[\cos^2\left(\frac{\theta}{4} + \frac{\pi}{24}\right) - 1\right] = -\frac{1}{16}$ $0 \leqslant \theta < 2\pi$

Give your answers in terms of π .

(5)

$$f(A) = 4\cos^4 A - 4\cos^2 A + 1$$

(d) Using calculus, find the exact value of $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} f(A) dA$

Give your answer in the form $a\pi - b\sqrt{c}$ where a and b are fractions in their lowest terms and c is a prime number.

(4)

Question 10 continued	
	•
	•
	•

11 The quadratic equation $x^2 - px + q = 0$ where p > 0, has roots α and β .

Given that $2\alpha\beta = 3$ and that $4(\alpha^2 + \beta^2) = k^2 - 6k - 3$ where k > 3

- (a) (i) write down the value of q,
 - (ii) find an expression, in terms of k, for p.

(5)

Given also that $7\alpha\beta = 3(\alpha + \beta)$

(b) find the value of k.

(2)

(c) Hence form an equation, with integer coefficients, which has roots

$$\frac{\alpha}{\alpha + \beta}$$
 and $\frac{\beta}{\alpha + \beta}$

(5)

Question 11 continued	
	(Total for Question 11 is 12 marks)
	TOTAL FOR PAPER IS 100 MARKS

