

Mark Scheme (Results)

January 2018

Pearson Edexcel International GCSE in Further Pure Mathematics (4PM0) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018 Publications Code 4PM0_01_1801_MS All the material in this publication is copyright © Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- \circ cao correct answer only
- \circ ft follow through
- \circ isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- \circ dep-dependent
- \circ indep-independent
- o eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$ leading to $x=...$
 $(ax^2+bx+c)=(mx+p)(nx+q)$ where $|pq|=|c|$ and $|mn|=|a|$ leading to $x=...$

2. Formula:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for *a*, *b* and *c*, leading to x = ...

3. <u>Completing the square:</u>

 $x^{2} + bx + c = 0$: $(x \pm \frac{b}{2})^{2} \pm q \pm c = 0$, $q \neq 0$ leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by $1.(x^n \rightarrow x^{n-1})$

2. Integration:

Power of at least one term increased by $1.(x^n \rightarrow x^{n+1})$

Use of a formula:

Generally, the method mark is gained by either

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

or, where the formula is <u>not</u> quoted, the method mark can be gained by implication from the substitution of <u>correct</u> values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers may be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

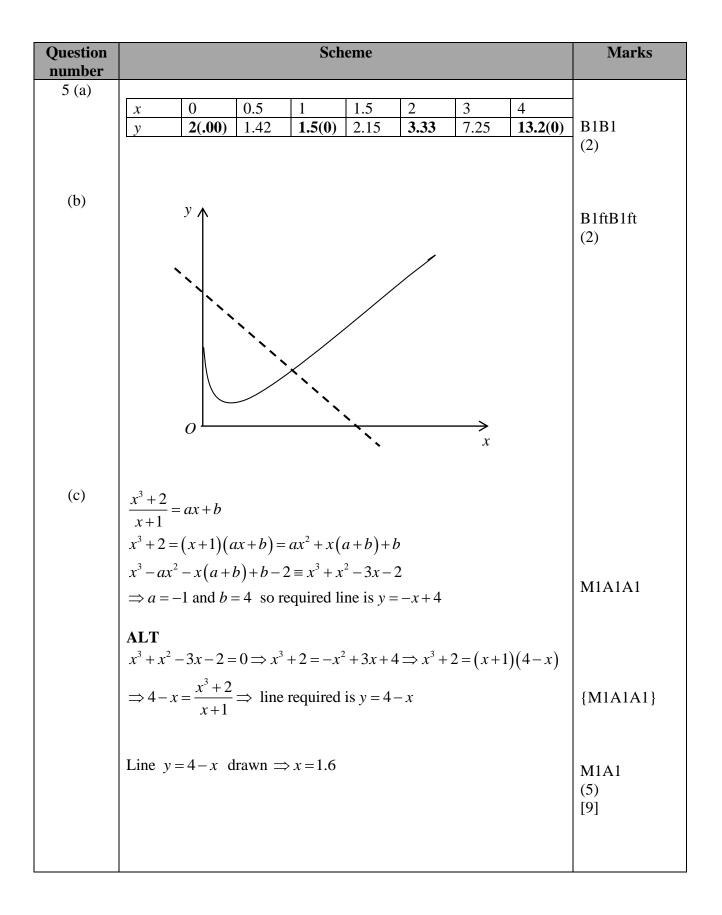
Jan 2018

Question	Scheme	Marks	
number			
1(a)	Completes the square to find,		
	$f(x) = -2\left(x - \frac{5}{4}\right)^2 + \frac{73}{8}$	M1	
	$p = -2$ $q = -\frac{5}{4}$ $r = \frac{73}{8}$	A2,1,0 (3)	
	ALT		
	$6+5x-2x^{2} = px^{2} + 2pqx + pq^{2} + r$ $\Rightarrow p = -2$	M1	
	$-4q = 5 \Longrightarrow q = -\frac{5}{4}$ $(-2)\left(\frac{25}{16}\right) + r = 6 \Longrightarrow r = \frac{73}{8}$	A1	
	$(-2)\left(\frac{25}{16}\right) + r = 6 \Longrightarrow r = \frac{73}{8}$	A1 (3)	
(b)	(i) $f(x) = \frac{73}{8}$	B1ft	
	(ii) $x = \frac{5}{4}$	B1ft (2)	
(c) (i)	$g(x) = \frac{73}{8}$	M1A1	
(ii)	$x^3 - \frac{5}{4} = 0 \Longrightarrow x = \sqrt[3]{\frac{5}{4}}$	B1ft	
		(3)	
		[8]	

4PMO Further Pure Mathematics Paper 1 Mark Scheme

Additional Notes			
Part Mark Guidance			
(a) M1 Takes out -2 as a common factor to give $-2\left(x\pm\frac{5}{4}\right)^2 \pm k \ k \neq 3, \ k \neq 0$)		
A1 For either $-2\left(x-\frac{5}{4}\right)^2 \pm k$ or $-2\left(x\pm\frac{5}{4}\right)^2 + \frac{73}{8}$	For either $-2\left(x - \frac{5}{4}\right)^2 \pm k$ or $-2\left(x \pm \frac{5}{4}\right)^2 + \frac{73}{8}$		
A1 For the correct values of p , q and r as shown. Accept embedded in f (For the correct values of p , q and r as shown. Accept embedded in $f(x)$		
$\left[f(x) = \right] - 2\left(x - \frac{5}{4}\right)^2 + \frac{73}{8}$	$[f(x) =] - 2\left(x - \frac{5}{4}\right)^2 + \frac{73}{8}$		
ALT			
M1 Expands $p(x+q)^2 + r$ correctly $[px^2 + 2pqx + pq^2 + r]$, equates to			
$6+5x-2x^2$ and solves for at least one of p, q or r.			
A1 For two correct of p, q or r .			
A1 For all three correct.			
(b) B1ft For $f(x) = \frac{73}{8}$ oe. (9.125) follow through their $\frac{73}{8}$ (unless they	use		
calculus in which case if $f(x) = \frac{73}{8}$ is correct here then award the ma	rk.		
B1ft For $x = \frac{5}{4}$ follow through their $\frac{5}{4}$			
ALT Uses calculus; it must be clear which are the values of f (x) and which	of <i>x</i> .		
(c) M1 For $-2\left(x^3 \pm \frac{5}{4}\right)^2 \pm \frac{73}{8} \Rightarrow g(x) = \frac{73}{8}$ follow through their $\frac{73}{8}$ for the formula $\frac{73}{8}$ f			
mark. The above need not be seen. Adequate evidence for this mark	is		
$g(x) = \frac{73}{8}$			
A1 For $g(x) = \frac{73}{8}$			
B1ft For $x = \sqrt[3]{\frac{5}{4}}$, oe e.g. $\left(\frac{15}{12}\right)^{\frac{1}{3}}$ ft $\frac{5}{4}$ Do not accept 1.07721 mark.			
ALT Uses calculus			
(c) M1 $\frac{dy}{dx} = 15x^2 - 12x^5 = 0 \Rightarrow x = \sqrt[3]{\frac{5}{4}} \Rightarrow g(x) = 6 + 5\left(\sqrt[3]{\frac{5}{4}}\right)^3 - 2\left(\sqrt[3]{\frac{5}{4}}\right)^6 = 1$	$\frac{73}{8}$		
A1 For $g(x) = \frac{73}{8}$ oe (9.125)			
B1ft For $x = \sqrt[3]{\frac{5}{4}}$, or e.g. $\left(\frac{15}{12}\right)^{\frac{1}{3}}$ ft $\sqrt[3]{\frac{5}{4}}$ from their differentiation.			
Do not accept 1.07721 for this mark.	Do not accept 1.07721 for this mark.		
Note: If answers to (b) and (c) are not labelled (i) or (ii) at least one of their values			
must be labelled correctly.			

Question number	Scheme	Marks
2 (a)	y y = 3x-3 and 3x+2y=12	B1 B1 (2)
(b)	Correct line drawn $y = -1$ Correct region shaded	B1 B1 (2)
(c)	Vertex $(2,3)$ $\left(\frac{14}{3},-1\right)$ $\left(\frac{2}{3},-1\right)$ $P = 4x - y$ 5 $\frac{59}{3}$ $\frac{11}{3}$ greatest	M1A1 M1A1 (4) [8]

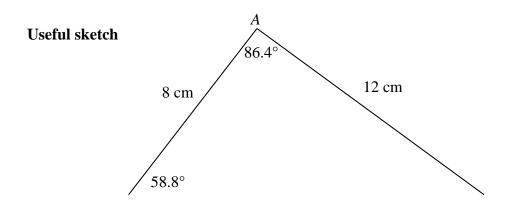

Addit	Additional Notes			
Part	Mark	Guidance		
(a)	B1	Either $y = 3x - 3$ or $3x + 2y = 12$ drawn correctly		
		Intersections on axes of $y = 3x - 3$ are $(0, -3)$ and $(1, 0)$		
		Intersections on axes of $3x+2y=12$ are (4, 0) and (0, 6)		
	B1	Both $y = 3x - 3$ and $3x + 2y = 12$ drawn correctly.		
(b)	B1	Line $y = -1$ drawn correctly and marked.		
		This line can be implied by the shading.		
	B1	Correct region shaded in or out. R need not be explicitly labelled		
(c)	M1	For attempting to find correct coordinates of at least one intersection with		
		the line $y = -1$. i.e. either $\left(\frac{14}{3}, -1\right)$ or $\left(\frac{2}{3}, -1\right)$.		
		Accept 4.6, 4.7, 4.8 or 0.6, 0.7, 0.8 (from their graph) for this mark.		
	A1	This is an M mark in Epen.		
		For $\left(\frac{14}{3}, -1\right)$ Accept 4.6, 4.7, 4.8 for $\frac{14}{3}$		
	M1	For substituting their $\left(\frac{14}{3}, -1\right)$ into <i>P</i> . Allow 4.6, 4.7 or 4.8 (from their		
		graph) for this mark.		
	A1	For $P = \frac{59}{3}$ Accept awrt 19.7		
	ALT			
	M1	Slope of objective function line is 4		
		Identifies the intersection of $3x + 2y = 12$ and $y = -1$ as the point where P		
		is greatest and attempts to find the point of intersection by		
	A1	This is an M mark in Epen.		
		For finding $(\frac{14}{3}, -1)$ Accept 4.6, 4.7, 4.8 for $\frac{14}{3}$		
	M1	For substituting their $\left(\frac{14}{3}, -1\right)$ into <i>P</i> . Allow 4.6, 4.7 or 4.8 (from their		
		graph) for this mark.		
	A1	For $P = \frac{59}{3}$ Accept awrt 19.7		

Question	Scheme		
number			
3	$\left(\frac{\mathrm{d}V}{\mathrm{d}t} = 27\right)$		
	$r = \frac{3h}{2}$		
	$V = \frac{1}{3}\pi r^2 h \Longrightarrow V = \frac{3}{4}\pi h^3$	B1	
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{9}{4}\pi h^2$	M1A1	
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \times \frac{\mathrm{d}h}{\mathrm{d}V}$	M1	
	$\frac{dh}{dt} = 27 \times \frac{4}{9\pi h^2} = 27 \times \frac{4}{9\pi 4^2} = 0.23873 \frac{dh}{dt} = 0.239$	M1dd A1	
		[6]	

Additi	onal Notes		
Mark	Guidance		
B1	For using the given $r = 1.5h$ to find the correct expression for the volume in terms		
	of <i>h</i> only. Need not be simplified. Accept $V = \frac{1}{3}\pi \left(\frac{3h}{2}\right)^2 h$ or $V = \frac{1}{3}\pi \times \frac{9h^2}{4} \times h$		
	sc You may see $27 = \frac{3}{4}\pi h^3$ Award B1 here if this is later differentiated and used		
	correctly.		
M1	For attempting to differentiate their V provided it is in terms if h only. Must be a		
	dimensionally correct V.		
A 1	See general guidance for the definition of an attempt.		
A1	For the correct derivative $\frac{dV}{dh} = \frac{9}{4}\pi h^2$		
M1	For a correct expression of chain rule.		
	Accept any correct equivalent. Eg., $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$ oe		
	Please check this carefully.		
	Chain rule may not be explicitly stated, but may be implied from correct work.		
M1dd	For substituting $h = 4$ and $\frac{dV}{dt} = 27$ into their expression of chain rule. It must be		
	correct, but not necessarily with $\frac{dh}{dt}$ as the subject		
	Note: this mark is dependent on BOTH previous Method marks scored.		
A1	For $\frac{dh}{dt} = 0.239$ rounded correctly.		
ALT			
B1	For using the given $r = 1.5h$ to find the correct expression for the volume in terms of <i>h</i> only.		
M1	For attempting to differentiate their V wrt to t provided V is in terms if h only.		
	Must be a dimensionally correct V.		
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{9}{2}\pi h^2 \frac{\mathrm{d}h}{\mathrm{d}t}$		
	$\frac{dt}{dt} = \frac{1}{4} \frac{\pi n}{dt} \frac{dt}{dt}$		
A1	For a correct expression for $\frac{dV}{dt}$ in terms of h and $\frac{dh}{dt}$		
M1			
	For re-arranging their $\frac{dV}{dt} = \frac{9}{4}\pi h^2 \frac{dh}{dt}$ to $\frac{dh}{dt} = \frac{4}{9\pi h^2} \times \frac{dV}{dt}$		
	Please check their re-arrangement, it must be correct for this mark.		
M1dd	For substituting $h = 4$ and $\frac{dV}{h} = 27$ into their $\frac{dh}{h}$		
	UI UI Note: This M mark and the provious M mark may be in either order		
A1	Note: This M mark and the previous M mark may be in either order. a^{h}		
431	For $-= 0.239$ rounded correctly.		
	d <i>t</i>		

Question number	Scheme	Marks
4 (a)	When <i>P</i> is at rest $v = 0$ $2t^2 - 16t + 30 = 0 \Longrightarrow (2t - 6)(t - 5) = 0$ t = 3, 5	M1A1 (2)
(b)	$\frac{dv}{dt} = 4t - 16$ $t = 3 \qquad \frac{dv}{dt} = -4$ $t = 5 \qquad \frac{dv}{dt} = 4$	M1
	$t = 3 \qquad \frac{\mathrm{d}v}{\mathrm{d}t} = -4$	M1 A1
(c)		(3) M1
	$s = \int (2t^2 - 16t + 30) dt = \frac{2t^3}{3} - 8t^2 + 30t \ (+c)$ when $t = 0, \ s = -4 \Longrightarrow c = -4$	B1
	$s = \frac{2 \times 3^3}{3} - 8 \times 3^2 + 30 \times 3 - 4 = 32 (m)$	A1 (3) [8]

Addi	Additional Notes			
Part	Mark	Guidance		
(a)	M1 Sets $2t^2 - 16t + 30 = 0$ and attempts to solve the quadratic. (See Ge Guidance for the definition of an attempt) They must achieve two values of <i>t</i> for this mark			
	A1	For $t = 3, 5$		
		Accept $t = 3,5$ without working shown.		
(b)	M1	For an attempt to differentiate the given <i>v</i> (See General Guidance for the definition of an attempt)		
	M1	For substituting both values of <i>t</i> to achieve two values for the acceleration.		
	A1	$\frac{\mathrm{d}v}{\mathrm{d}t} = -4$ and 4		
(c)	M1	For an attempt to integrate the given <i>v</i> and substitute $t = 3$ into their integrated expression and find a value for <i>s</i> . (See general guidance for the definition of an attempt) <i>c</i> is not required for this mark ALT using definite integration; Integrated and evaluated $\left[,\frac{2t^3}{3}-8t^2+30t,\right]_0^3(-4)$ This must be a complete method for this mark.		
	B1	Uses the information given to find that $c = -4$ ALT using definite integration; subtracts 4 from their		
		evaluated integrated expression.		
	A1	For $s = 32$ (m) cso		



Addit	Additional Notes			
Part	Mark	Guidance		
(a)	B1	For any two correct values (correctly rounded)		
		Accept 2.00 and 1.50 and also 3.33 or 3.3		
	B1	For all four correct values (correctly rounded)		
		Accept 2.00 and 1.50		
(b)	B1ft	For their points all correctly plotted within half of one square.		
		Ignore a missing point provided the line goes through the correct point.		
	B1ft	For all of their points joined in a smooth curve.		
(c)	M1	Equates $\frac{x^3+2}{x+1} = ax+b$, and multiplies out correctly		
	A1	For either $a = -1$ or $b = 4$		
	A1	For $a = -1$ and $b = 4$.		
		For the correct line stated, $y = -x + 4$ oe seen, award A1A1		
		We do not need to see $y = 4 - x$ stated explicitly.		
	M1	For their $y = -x + 4$ drawn correctly		
		Intersections with coord axes $(4,0)$ $(0,4)$		
		For the correct line $y = -x + 4$ drawn award M1A1A1M1		
	A1	For $x = 1.6$ only		
	ALT	· · · · · ·		
	M1	Rearranges $x^3 + x^2 - 3x - 2 = 0$ into the numerator of $x^3 + 2$ on one side and		
		$-x^2+3x+4$ on the other. Must be correct		
	A1	Attempts to factorise the quadratic		
		(See general guidance for the definition of an attempt)		
	A1	A correct re-arrangement $4 - x = \frac{x^3 + 2}{x + 1}$ with the line $y = 4 - x$ or seen		
		This mark can be implied from a correct line drawn.		
	M1	For their $y = -x + 4$ drawn correctly		
		Intersections with coord axes $(4,0)$ $(0,4)$		
		For the correct line $y = -x + 4$ drawn award M1A1A1M1		
A1 For $x = 1.6$ only				
Note:	Do not	accept $x = 1.6$ seen without the correct line $y = 4 - x$		

Question number	Scheme			
6 (a)	$ \begin{array}{c} \tan \theta^{\circ} = \sqrt{255} \\ 1^{2} + 255 = 256 \\ \sqrt{256} = 16 \end{array} $ 1 1 1 1 1 1 1 1 1 1	M1A1cso		
(b)	$\Rightarrow \cos \theta^{\circ} = \frac{1}{16} * \sqrt{255}$ $\cos \theta^{\circ} = \frac{1}{16} = \frac{x^{2} + (x+4)^{2} - (2x-2)^{2}}{2 \times x \times (x+4)}$	(2)		
	$16 \qquad 2 \times x \times (x+4)$ $\Rightarrow 0 = 17x^2 - 124x - 96$ $\Rightarrow x = \frac{124 \pm \sqrt{124^2 - 4 \times 17 \times (-96)}}{2 \times 17} = 8 \text{(other root not needed)}$	M1A1A1		
(c)	$2 \times 17 = -3 (other root not needed)$ Method 1	M1A1 (5)		
	{ $AB = 8$, $AC = 12$, $BC = 14$ } Uses sine rule to find ABC $\left[\theta^{\circ} = \tan^{-1}\sqrt{255} = 86.416\right]$			
	$\frac{\sin 86.416}{14} = \frac{\sin ABC}{12} \Longrightarrow \angle ABC = \sin^{-1} 0.855467 = 58.8^{\circ}$ Method 2	M1A1 (2)		
	{ $AB = 8, AC = 12, BC = 14$ } Uses cosine rule $\cos ABC = \frac{8^2 + 14^2 - 12^2}{2 \times 8 \times 14} = 0.5178 \Rightarrow ABC = 58.8^\circ$	{M1A1} {(2)}		
(d)	Area = $\frac{1}{2} \times 8 \times 14 \times \sin 58.8 = 47.9$ (cm ²) ALT Uses Heron's formula 8+12+14	M1A1 (2)		
	$s = \frac{8+12+14}{2} = 17$ $A = \sqrt{17(17-8)(17-12)(17-14)} = 47.9$	{M1A1}		

•			-	
			1	
	т	т	1	

Addit	ditional Notes				
Part	Mark	Guidance			
(a)	M1	Uses the tangent ratio with Pythagoras theorem to est hypotenuse is '16'. This is a show question, we must see evidence of Py for this mark.			
	A1	For $\cos \theta^{\circ} = \frac{1}{16} \cos \theta$			
	ALT				
	There must be a complete method for the award of this mark.				
(b)	M1	For attempting to use cosine rule. (Any attempt to use sine rule is M0)			
	A1	Uses a correct cosine rule either form, substitutes $\cos \theta^{\circ} = \frac{1}{16}$ Alternative form of cosine rule: $(2x-2)^2 = (x+4)^2 + x^2 - 2 \times (x+4) \times x \times \frac{1}{16}$ (Allow $\cos 86.4^{\circ}$ for this mark)			
	A1	For forming a correct 3TQ			
	M1	Attempts to solve their 3TQ (See general guidance)			
	A1	x = 8 (ignore other root)			
(c)	M1	Uses correct trigonometry (sine or cosine rule using t achieves a value for angle <i>ABC</i> .	heir value for <i>x</i>) and		
	A1	$\angle ABC = 58.8^{\circ}$			
(d)					
	A1	For 47.9 (cm^2)			
	ALT				
	M1	Uses a correct Heron's formula with values derived f	rom their <i>x</i> .		
	A1	For 47.9 (cm ²)			

	$B \xrightarrow{58.8^{\circ}} 34.4^{\circ} C$	
Question number	Scheme	Marks
7 (a)	$(1-4x^{2})^{-\frac{1}{2}} = 1 + \left(-\frac{1}{2}\right)\left(-4x^{2}\right) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-4x^{2}\right)^{2}}{2!} + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)\left(-4x^{2}\right)^{3}}{3!}$ $(1-4x^{2})^{-\frac{1}{2}} = 1 + 2x^{2} + 6x^{4} + 20x^{6} + \dots$ $-\frac{1}{2} < x < \frac{1}{2} \text{or} x < \frac{1}{2}$	
	$(1-4x^2)^{-\frac{1}{2}} = 1+2x^2+6x^4+20x^6+\dots$	M1A1A1 (3)
(b)	$-\frac{1}{2} < x < \frac{1}{2}$ or $ x < \frac{1}{2}$	B1 (1)
(c)	$(3+x)(1+2x^2+6x^4) = 3+x+6x^2+2x^3+18x^4$	M1M1A1 (3)
(d)	$\int_{0}^{0.3} \frac{3+x}{\sqrt{(1-4x^2)}} dx = \left[3x + \frac{x^2}{2} + 2x^3 + \frac{x^4}{2} + \frac{18x^5}{5} \right]_{0}^{0.3} = 1.011798 \approx 1.01 $ (3sf)	M1A1M1d A1 (4) [11]

Addit	Additional Notes		
Part	Mark	Guidance	
(a)	M1	For an attempt at the binomial expansion.	
		Minimally acceptable attempt:	
		• The first term of the expansion must be 1	
		• The power of <i>x</i> must be correct in each term	
		Note: $(-4x^2$ must be used correctly at least once).	
		• The denominators must be correct	
	A1	First term of 1 and at least one term in x correctly simplified	
	A1	The complete expansion completely correct as shown.	
(b)	B1	For either form of the validity $-\frac{1}{2} < x < \frac{1}{2}$ or $ x < \frac{1}{2}$	
(c)	M1	Shows an intention to multiply their expansion by $(3+x)$	
	M1	Multiplies out their expansion by $(3+x)$ to achieve at least five terms	
		starting with the first term = 3, in ascending powers of x up to x^4 (need not be in order of ascending powers of x for this mark)	
	A1	For a fully correct expansion $3+x+6x^2+2x^3+18x^4$	
		These terms need not be in order	
(d)	M1	For attempting to integrate their expansion which must have a minimum of 5 terms up to x^4	
	A1	For a fully correct integrated expression $3x + \frac{x^2}{2} + 2x^3 + \frac{x^4}{2} + \frac{18x^5}{5}$	
	M1d	Substitutes 0.3 (and 0) into their integrated expansion	
	A1	For 1.01 correctly rounded	

Question number	Scheme	Marks
8(a)	$\frac{ar^5}{ar} = 4 \Longrightarrow r^4 = 4 \Longrightarrow r = \pm\sqrt{2}$	M1A1 (2)
(b)	$ar^{2} + ar^{6} = 30 \Longrightarrow a(r^{2} + r^{6}) = 30$ $a\left[\left(\sqrt{2}\right)^{2} + \left(\sqrt{2}\right)^{6}\right] = 30 \Longrightarrow 10a = 30 \Longrightarrow a = 3$	M1A1A1 (3)
(c)	$S_{10} = \frac{3\left(\left(\sqrt{2}\right)^{10} - 1\right)}{\sqrt{2} - 1} = \left\{\frac{93}{\sqrt{2} - 1}\right\} \text{ or awrt } 224.5 \text{ or } 93\left(\sqrt{2} + 1\right)$	M1A1 (2)
(d)	$2400 < 3 \times \left(\sqrt{2}\right)^{(n-1)} \Longrightarrow \left(\sqrt{2}\right)^{(n-1)} > 800$ $n-1 > \log_{\sqrt{2}} 800 \Longrightarrow n-1 > 19.287 \Longrightarrow n > 20.287$ $n = 21$	M1 M1dA1 (3)
		[10]

) to achieve two
) to achieve two
uation to find <i>a</i> .
а
ns are missing.
$\frac{-93}{-\sqrt{2}}$
t =) using their
$\left(\sqrt{2}\right)^{n-1}$
ly.
)
r n for the award
ave been used at
her $n = 20$ or $n =$
= 20 and <i>n</i> = 21

Question number	Scheme	Marks
9 (a)	$x^2 - \operatorname{sum} \times x + \operatorname{product} = 0$	
	$x^2 + \frac{5}{2}x - 5 = 0$	
	$2x^2 + 5x - 10 = 0$ or integer multiples	M1A1 (2)
(b) (i)	$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = (\frac{25}{4}) + 10 = \frac{65}{4}$	M1A1
(ii)	$\left(\alpha+\beta\right)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$	
	$\Rightarrow \alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = -\frac{125}{8} + 15\left(-\frac{5}{2}\right) = -\frac{425}{8}$	M1A1A1
		(5)
	$\alpha^{3} + \beta^{3} = (\alpha + \beta)(\alpha^{2} - \alpha\beta + \beta^{2}) = \left(-\frac{5}{2}\right)\left(\frac{73}{4} + 5\right) = -\frac{425}{8}$	{M1A1A1}
	Product $(2 - 1) (2 - 1) (3 - 2) (3 -$	
(c)	$\left(\alpha - \frac{1}{\alpha^2}\right) \times \left(\beta - \frac{1}{\beta^2}\right) = \left(\frac{\alpha^3 - 1}{\alpha^2}\right) \left(\frac{\beta^3 - 1}{\beta^2}\right) = \frac{\alpha^3 \beta^3 - \left(\alpha^3 + \beta^3\right) + 1}{\alpha^2 \beta^2}$	M1
	$=\frac{-125\frac{425}{8}+1}{36}=-\frac{567}{200}$	A1
	Sum $\left(\alpha - \frac{1}{\alpha^2}\right) + \left(\beta - \frac{1}{\beta^2}\right) = \left(\frac{\alpha^3 - 1}{\alpha^2}\right) + \left(\frac{\beta^3 - 1}{\beta^2}\right)$	
	$=\frac{\alpha^{3}\beta^{2}-\beta^{2}+\alpha^{2}\beta^{3}-\alpha^{2}}{\alpha^{2}\beta^{2}}=\frac{\alpha^{2}\beta^{2}(\alpha+\beta)-(\alpha^{2}+\beta^{2})}{\alpha^{2}\beta^{2}}$	M1
	$=\frac{25\left(-\frac{5}{2}\right)-\frac{65}{4}}{25}=-\frac{63}{20}$ oe	A1
	Equation	

Sum = $-\frac{63}{20}$, Product = $-\frac{567}{200}$ $\Rightarrow x^2 + \frac{63}{20}x - \frac{567}{200}$ (= 0)	M1A1 (6) [13]
$x^{2} + \frac{314}{100}x - \frac{567}{200} (= 0) M1$ $200x^{2} + 630x - 567 = 0 A1$	

T		
Μ	Guidance	
M1	Forms a quadratic equation with the given p	product and sum $\left(x^2 + \frac{5}{2}x - 5\right)$
	= 0 not required for this mark. Allow $y =$	for this mark
A1	For $2x^2 + 5x - 10 = 0$ or equivalent equation Look out for = 0 which must be present.	on with integer coefficients only.
M1	Uses the correct algebra to form $\alpha^2 + \beta^2$ a	nd substitutes the given values of the sum
		U
A1	For $\alpha^2 + \beta^2 = \frac{65}{4}$	
M1	Uses the correct algebra to form an	Their algebraic expansion must be
	expression for $\alpha^3 + \beta^3$	sufficiently arranged to allow substitution
		of $\alpha^2 + \beta^2$, $\alpha + \beta$ and $\alpha\beta$
	$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ or	
	$\alpha^{3} + \beta^{3} = (\alpha + \beta)(\alpha^{2} - \alpha\beta + \beta^{2})$	
A1	Substitutes the given values for the sum and	product into their form of $\alpha^3 + \beta^3$
A1	For $\alpha^3 + \beta^3 = -\frac{425}{8}$ oe	
M1	Product	
	For the correct algebra to achieve $\frac{\alpha^3 \beta^3 - \beta^3}{\alpha^3 - \beta^3}$	$\frac{-(\alpha^3 + \beta^3) + 1}{\alpha^2 \beta^2} \text{or } \alpha\beta - \left(\frac{\alpha^3 + \beta^3}{\alpha^2 \beta^2}\right) + \frac{1}{\alpha^2 \beta^2}$
	and substitutes their $(product)^3$, $(product)^3$	² and their $\alpha^3 + \beta^3$
	Their algebra must be sufficient to substitute	$\alpha \beta$, $\alpha^3 + \beta^3$ and $\alpha^2 \beta^2$ in directly.
A1	$Product = -\frac{567}{200} \text{ oe}$	
M1	Sum	
	For the correct algebra to achieve $\frac{\alpha^2 \beta^2}{\alpha}$	$\frac{(\alpha+\beta)-(\alpha^2+\beta^2)}{\alpha^2\beta^2} \text{ or } \alpha+\beta-\left(\frac{\alpha^2+\beta^2}{\alpha^2\beta^2}\right)$
	(but in a from where the sum and product c (product) ² and their $\alpha^2 + \beta^2$	an be substituted) and substitutes their
	M M1 A1 M1 A1 M1 A1 M1 A1 M1 A1 M1 A1 A1 A1 A1 A1 A1 A1	M1Forms a quadratic equation with the given p = 0 not required for this mark. Allow y =A1For $2x^2 + 5x - 10 = 0$ or equivalent equation Look out for = 0 which must be present.M1Uses the correct algebra to form $\alpha^2 + \beta^2$ a and product.A1For $\alpha^2 + \beta^2 = \frac{65}{4}$ M1Uses the correct algebra to form an expression for $\alpha^3 + \beta^3$ For example; $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ or

A1	$Sum = -\frac{63}{20}$
M	Equation
	Uses their product and their sum correctly to form a quadratic equation
	$x^{2} + \frac{63}{20}x - \frac{567}{200}$ (= 0 not required for this mark)
	Check their signs are correct Allow $y =$ for this mark
A1	For the correct equation as shown with integer coefficients.
	Accept equivalent integer values eg., $2000x^2 + 6300x - 5670 = 0$

Question number	Scheme	Marks
10 (a)	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta \Longrightarrow \cos 2\theta = \cos^2 \theta - (1 - \cos^2 \theta)$	M1M1
	$\cos 2\theta = 2\cos^2 \theta - 1 \Longrightarrow \cos^2 \theta = \frac{1}{2}(\cos 2\theta + 1) \qquad $	A1cso (3)
(b)	(Uses $\cos^2 \theta + \sin^2 \theta = 1$ to give) $\cos 2\theta = 1 - 2\sin^2 \theta$ seen anywhere	B1
	$4\cos^{4}\theta = \cos^{2}2\theta + 2\cos 2\theta + 1 \Longrightarrow$ $4\cos^{4}\theta = \frac{1}{2}(\cos 4\theta + 1) + 2(1 - 2\sin^{2}\theta) + 1 \Longrightarrow$	M1 M1
	$8\cos^{4}\theta = \cos 4\theta + 1 + 4 - 8\sin^{2}\theta + 2 \Longrightarrow$ $\cos 4\theta = 8\cos^{4}\theta + 8\sin^{2}\theta - 7 *$	M1 A1cso (5)
(c)	$16\cos^4\left(\theta - \frac{\pi}{6}\right) + 16\sin^2\left(\theta - \frac{\pi}{6}\right) - 15 = 0$	
	$\Rightarrow 8\cos^4\left(\theta - \frac{\pi}{6}\right) + 8\sin^2\left(\theta - \frac{\pi}{6}\right) - 7 = \frac{1}{2}$	M1A1
	$\cos 4 \left(\theta - \frac{\pi}{6} \right) = \frac{1}{2} \Longrightarrow 4 \left(\theta - \frac{\pi}{6} \right) = \pm \frac{\pi}{3}, \pm \frac{5\pi}{3} \Longrightarrow \theta = \frac{\pi}{4}, \frac{\pi}{12}$ or decimal equivalents awrt 0.79, 0.26	M1A1 (4)
(d)	$\int_0^{\frac{\pi}{2}} \left(8\cos^4\theta + 8\sin^2\theta + 2\sin 2\theta\right) d\theta = \int_0^{\frac{\pi}{2}} \left(\cos 4\theta + 2\sin 2\theta + 7\right) d\theta$	
	$\Rightarrow = \left[\frac{\sin 4\theta}{4} - \cos 2\theta + 7\theta\right]_0^{\frac{\pi}{2}} = \left[\left(0 - \left(-1\right) + \frac{7\pi}{2}\right) - \left(0 - 1 + 0\right)\right] = 2 + \frac{7\pi}{2}\pi$	M1M1M1dd A1 (4)
		[16]

Addit	ditional Notes		
Part	Mark	Guidance	
(a)	M1	Uses the given identity to write $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$	
	M1	Uses the identity $\cos^2 A + \sin^2 A = 1$ to form an identity in	
		$\cos 2\theta$, $\cos^2 \theta$ and 1 only	
	A1	For the correct identity as shown.	
(b)	Way 1	· · · ·	
	B1	Uses $\cos^2 \theta + \sin^2 \theta = 1$ to give $2\sin^2 \theta = 1 - \cos 2\theta$ (seen anywhere)	
		Or uses the identity $\cos^2 A + \sin^2 A = 1$ to replace $\sin^2 \theta$	
	The fol	lowing is a general guide for marking this part. You may see the method in	
	a differ	ent order.	
	M1	For expanding $\cos^4 \theta = \left[\frac{1}{2}(\cos 2\theta + 1)\right]^2 \Rightarrow \frac{1}{4}(\cos^2 2\theta + 2\cos 2\theta + 1)$	
		The expansion for $(\cos 2\theta + 1)^2$ must be correct for this mark	
		Look for $2\cos^2 2\theta + 4\cos 2\theta + 2$	
	M1d	For substituting $\frac{1}{2}(\cos 4\theta + 1)$ into $\cos^2 2\theta$	
	M1d	Eliminates $\cos 2\theta$ to leave only $\cos 4\theta \pm k$	
	A1	For the correct $\cos 4\theta = 8\cos^4 \theta + 8\sin^2 \theta - 7 \cos^4 \theta$	
		This is a show question. There must be no errors in this proof.	
	Way 2	F	
	B1	Uses $\cos^2 \theta + \sin^2 \theta = 1$ to give $2\sin^2 \theta = 1 - \cos 2\theta$ (seen anywhere)	
		Or uses the identity $\cos^2 A + \sin^2 A = 1$ to replace $\sin^2 \theta$	
	M1	For expanding $\cos^4 \theta = \left[\frac{1}{2}(\cos 2\theta + 1)\right]^2 \Rightarrow \frac{1}{4}(\cos^2 2\theta + 2\cos 2\theta + 1)$	
		The expansion for $(\cos 2\theta + 1)^2$ must be correct for this mark	
		Look for $2\cos^2 2\theta + 4\cos 2\theta + 2$	
	M1d	For substituting $\frac{1}{2}(\cos 4\theta + 1)$ into $\cos^2 2\theta$	
	M1d	Eliminates $\cos^2 \theta$ to leave only $\cos 4\theta \pm k$	
	A1	For the correct $\cos 4\theta = 8\cos^4 \theta + 8\sin^2 \theta - 7 \cos^4 \theta$	

		This is a show question. There must be no errors in this proof.
	Way 3	This is the general method for marking this part starting with $\cos 4\theta$
	B1	For using either $\cos 4\theta = \cos^2 2\theta - \sin^2 2\theta$ or $\cos 4\theta = 2\cos^2 2\theta - 1$
	M1	For expanding; $(\cos^2 \theta - \sin^2 \theta)^2 = \cos^4 \theta - 2\sin^2 \theta \cos^2 \theta + \sin^4 \theta$
	M1d	correctly For expanding; $\sin^4 \theta = 1 - 2\cos^2 \theta + \cos^4 \theta$ or
	WITU	$\sin^4\theta = -1 + 2\sin^2\theta + \cos^4\theta$
		To be in terms of $\cos^4 \theta$ and $\sin^2 \theta$ or $\cos^2 \theta$ This must be correct for this mark
	M1d	For eliminating all $\cos^2 \theta$ by using $1 - \sin^2 \theta$ Ignore incorrect integer values for this mark
	A1	For the correct final answer as shown: $\cos 4\theta = 8\cos^4 \theta + 8\sin^2 \theta - 7$
(c)	M1	For the correct equation $8\cos^4\left(\theta - \frac{\pi}{6}\right) + 8\sin^2\left(\theta - \frac{\pi}{6}\right) - 7 = \frac{1}{2}$ and
		subsequent substitution to give $\cos 4\left(\theta - \frac{\pi}{6}\right) = k$ where $-1 < k < 1$ $k \neq 0$
		For this mark accept a substitution for $\theta - \frac{\pi}{6}$ or $4\left(\theta - \frac{\pi}{6}\right)$
	A1	$\cos 4 \left(\theta - \frac{\pi}{6} \right) = \frac{1}{2}$
		For this mark accept a substitution for $\theta - \frac{\pi}{6}$ or $4\left(\theta - \frac{\pi}{6}\right)$
	M1	For $\cos 4\left(\theta - \frac{\pi}{6}\right) = \frac{1}{2} \Rightarrow \left(\theta - \frac{\pi}{6}\right) = \pm \frac{\pi}{12} \Rightarrow \theta = \frac{\pi}{4}, \frac{\pi}{12}$
		(At least one value for θ)
	A1	$\theta = \frac{\pi}{4}$, $\frac{\pi}{12}$ or awrt 0.79, 0.26
		Ignore any extra values outside of the range. Penalise extra values within range by deducting the A mark.
	ALT	
	M1	Uses the identity $\cos^2 A + \sin^2 A = 1$ to replace $\cos^2 \theta$ and forms a 3TQ in $\cos^2 \theta$ to give as a minimum
		$16\cos^4\left(\theta - \frac{\pi}{6}\right) - 16\cos^2\left(\theta - \frac{\pi}{6}\right) \pm k = 0$
	A1	For the correct 3TQ
		$16\cos^4\left(\theta - \frac{\pi}{6}\right) - 16\cos^2\left(\theta - \frac{\pi}{6}\right) + 1 = 0$
	M1	Solves 3TQ to give $\cos\left(\theta - \frac{\pi}{6}\right) = \pm 0.96591$ and/or ± 0.25865
		Accept just positive values
	A1	$\theta = \frac{\pi}{4}$, $\frac{\pi}{12}$ or awrt 0.79, 0.26

		Ignore any extra values outside of the range. Penalise extra values within range by deducting the A mark.
(d)	M1	Replaces $8\cos^4\theta + 8\sin^2\theta + 2\sin 2\theta$ by $\cos 4\theta + 2\sin 2\theta + 7$
	M1	Integrates their expression, provided it does not contain any powers of cos or sin. Minimally acceptable integration is $\int k \cos 4\theta \Rightarrow \frac{\pm k \sin 4\theta}{4}$ or $\int k \sin 2\theta \Rightarrow \frac{\pm k \sin 2\theta}{2}$
		$\int k \cos 4\theta \Rightarrow \underline{\qquad} 4 \text{or } \int k \sin 2\theta \Rightarrow \underline{\qquad} 2$
	M1dd	For substituting $\frac{\pi}{2}$ and 0 into their integrated expression
	A1	For $2 + \frac{7}{2}\pi$ oe