Pearson

Mark Scheme (Results)

January 2017

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM0) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017
Publications Code 4PM0_01_1701_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission
- No working

If no working is shown then correct answers may score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

Always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses 2 A (or B) marks on that part, but can gain the M marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part ofthe question CANNOT be awarded in another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q) \text {, where }|p q|=|c| \text { leading to } x=\ldots \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q) \text { where }|p q|=|c| \text { and }|m n|=|a| \text { leading to } x=\ldots
\end{aligned}
$$

2. Formula:

Attempt to use the correct formula (shown explicitly or implied by working) with values for a, b and c, leading to $x=\ldots$.
3. Completing the square:

$$
x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0 \quad \text { leading to } x=\ldots
$$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by $1 .\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration:

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula:

Generally, the method mark is gained by either
quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values
or, where the formula is not quoted, the method mark can be gained by implication from the substitution of correct values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers may be awarded no marks".
General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

Jan 2017
 4PMO Further Pure Mathematics Paper 1
 Mark Scheme

Question number		Scheme	Marks	
2 (a)		$\mathrm{f}(4)=2 \times 4^{3}-3 p \times 4^{2}+4+4 p=0 \Rightarrow 128+4=48 p+4 p \Rightarrow p=3 *$	M1A1 (2)	
(b)		$\mathrm{f}(-2)=2(-2)^{3}-9(-2)^{2}+(-2)+12=-42$	M1A1 (2)	
(c)		$\frac{2 x^{3}-9 x^{2}+x+12}{x-4}=2 x^{2}-x-3=(x+1)(2 x-3) \Rightarrow$	M1A1	
(d)		$2 x^{3}-9 x^{2}+x+12=(x-4)(x+1)(2 x-3)$$(x-4)(x+1)(2 x-3)=0 \Rightarrow x=4, x=-1, x=\frac{3}{2}$	A1	
		(3)		
		M1A1 (2) (9)		
Notes				
(a)	M1		For either $\mathrm{f}(-4)$ or $\mathrm{f}(4)$, equating $\mathrm{f}(\pm 4)=0$ and finding a value for p. For the award of this mark the method must be complete.	
	A1		$p=3$	
(b)	M1	For either $\mathrm{f}(-2)$ or $\mathrm{f}(2)$ and finding a value for $\mathrm{f}(\pm 2)$ using the given p. For the award of this mark the method must be complete. Division Divides by $(x+2)$ and achieves at least $2 x^{2}-13 x+k$ (complete method)		
	A1	$\mathrm{f}(-2)=-42$ or remainder of -42 using division		
(c)	M1	Divides $\mathrm{f}(x)$ - by $(x-4)$ or $(x+1)$ any method, achieves at least $2 x^{2} \pm a x \pm b$ where $a \neq 0, b \neq 0$, and attempts to factorise their 3TQ. (See general guidance for an acceptable attempt) Note: $\left(2 x^{3}-9 x^{2}+x+12\right) \div(x+1)=2 x^{2}-11 x+12$ OR by inspection; $(x-4)$ and $(x+1)$ are factors, hence third factor is $(2 x \pm a)$		
	A1	For achieving $2 x^{2}-x-3=(x+1)(2 x-3)$ or $2 x^{2}-11 x+12=(2 x-3)(x-4)$		
	A1	For the correct factorisation of $\mathrm{f}(x)=(x-4)(x+1)(2 x-3)$		
(d)	M1	For setting $\mathrm{f}(x)=0$ (can be implied by further work) and attempting to solve a factorised $\mathrm{f}(x)=0$. ie., $(x \pm 4)\left(x+1^{\prime}\right)\left(2^{\prime} x-'^{\prime}\right)=0 \Rightarrow x= \pm 4, '-1^{\prime}, \frac{3}{2}$,		
	A1	For $x=4, x=-1, x=\frac{3}{2}$ Note: answers must be derived from correct algebra		

Question number	Scheme	Marks
3	$\begin{aligned} & 3 x^{2}-4 x+1<6 x-2 \Rightarrow 3 x^{2}-10 x+3<0 \\ & (x-3)(3 x-1)<0 \Rightarrow \text { c.v's } x=3, x=\frac{1}{3} \end{aligned}$ Inside region for their values $\frac{1}{3}<x<3$	M1 M1A1 M1A1 (5)
Notes		
M1	For multiplying out the given inequality and achieving a 3TQ. Min acceptable 3 TQ is $3 x^{2}+b x+c$ Allow; $3 x^{2}+b x+c=0,3 x^{2}+b x+c<0,3 x^{2}+b x+c>0$ or use of \leq or \geq or even just $3 x^{2}+b x+c$	
M1	For solving their 3TQ (see general guidance for the definition of an attempt) and finding two critical values	
A1	For $x=3, x=\frac{1}{3}$	
M1	For choosing the INSIDE region for their cvs.	
A1	For a correctly defined region as shown $\frac{1}{3}<x<3$ Accept $\frac{1}{3}<x$ AND $x<3$ Do not accept $\frac{1}{3}<x$ OR $x<3$ (This is M1A0) Allow use of set language $\frac{1}{3}<x \cap x<3$ but not $\frac{1}{3}<x \cup x<3$ (This is M1A0)	
NB: Cancelling through by $(3 x-1)$ and stating $x<3$ is M0M0A0M0A0		
The quest marks. For just Minimally $(3 x-1)(x$	on states 'using algebra'. There must be a $<x<3$ without evidence of algebra M0M0 acceptable attempt is as follows; $+1)$ OR $(3 x-1)(x-3) \Rightarrow x=\frac{1}{3},-1$ or	to award

Question number	Scheme	Marks
$\mathbf{4 (\mathbf { a })}$	$a r+a r^{4}=\frac{28}{81}, a r-a r^{4}=\frac{76}{405}$	M1
(i)	$\frac{a r=\frac{4}{15}, a r^{4}=\frac{32}{405}}{a r}=\frac{32}{405} \div \frac{4}{15}=\frac{8}{27} \Rightarrow r=\frac{2}{3} *$	M1A1
(ii)	$a=\frac{2}{5}$	M1A1
(b)	$S=\frac{2}{5}=\frac{6}{5}$	B1
		(6)

Notes		
(a)	M1	For setting up both equations for the sum and the difference. Accept any letter for the first term.
	M1	Adds or subtracts their equations to eliminate $a r$ or $a r^{4}$
	A1	For both correct $a r=\frac{4}{15} \text { and } a r^{4}=\frac{32}{405}$
(i)	M1	Divides $a r^{4}$ by $a r$ to achieve an equation for r^{3}
	A1	For $r=\frac{2}{3}$ Note: This is a given result and every step must be shown to achieve this mark
(ii)	A1	For $a=\frac{2}{5}$ oe
ALT 1 for part (a)		
(a)	M1	Sets up both equations for the sum and the difference $a r+a r^{4}=a r\left(1+r^{3}\right)=\frac{28}{81} \quad a r-a r^{4}=a r\left(1-r^{3}\right)=\frac{76}{405}$
	M1	Factorises and divides equations above to eliminate $a r$ to give $\left[\operatorname{ar}\left(1+r^{3}\right)=\frac{28}{81}\right] \div\left[\operatorname{ar}\left(1-r^{3}\right)=\frac{76}{405}\right]=\frac{\left(1+r^{3}\right)}{\left(1-r^{3}\right)}=\frac{28 / 81}{76 / 405}\left(=\frac{35}{19}\right)$
	A1	Achieves a correct equation in r^{3} or r^{4} $\frac{1+r^{3}}{1-r^{3}}=\frac{28 \times 405}{81 \times 76} \quad \text { or } \quad \frac{r+r^{4}}{r-r^{4}}=\frac{28 \times 405}{81 \times 76}$
(i)	M1	Attempts to solve their equation in r^{3} as far as $r=$
	A1	For $r=\frac{2}{3}$ Note: This is a given result so every step must be seen.
(ii)	B1	For $a=\frac{2}{5}$ oe
ALT 2 for part (a) using $\boldsymbol{t}_{\mathbf{2}}$ and \boldsymbol{t}_{5} or any other letters e.g $\boldsymbol{x}, \boldsymbol{y}$		
(a)	M1	Solves SE by elimination to give: $t_{2}+t_{5}=\frac{28}{81}$ and $t_{2}-t_{5}=\frac{76}{405} \Rightarrow t_{2}=\frac{4}{15}$ OR $t_{5}=\frac{32}{405}$
	M1	$t_{2}=a r=\frac{4}{15}$ OR $t_{5}=a r^{4}=\frac{32}{405}$ Award these marks when they identify and $t=a r=\frac{4}{15} \quad t_{5}=a r^{4}=\frac{32}{405}$
	A1	$t_{2}=a r=\frac{4}{15}$ AND $t_{5}=a r^{4}=\frac{32}{405} \quad$ and $\quad, t_{5}=a r=\frac{32}{405}$
Then follow ms for (i) and (ii).		
(b)	M1	Uses correct formula for the sum to infinity of a geometric series $S=\frac{a}{1-r}=\frac{\text { their } a}{1-\frac{2}{3}}='^{\prime} \frac{6}{5}$ ' They must reach a value for S_{∞} for this mark
	A1	For $S=\frac{6}{5}$

Question number	Scheme	Marks
5. (a)	$12^{2}=2 B A^{2}-2 \times B A \times B C \times \cos 120 \Rightarrow 144=3 A B^{2} \Rightarrow A B=\sqrt{48}=(4 \sqrt{3})$ ALT $A B=\frac{12 \sin 30}{\sin 120}=4 \sqrt{3}$ (6.9282...)	M1A1 (M1A1) (2)
(b)	$\frac{\sin D}{12}=\frac{\sin (35)}{8} \Rightarrow D=\sin ^{-1}\left(\frac{12 \sin (35)}{8}\right)=59.357 \ldots$ $D=180-59.3755=120.64245 . . \approx 120.6$	M1A1 A1ft (3)
(c)	$A C D=24.3541^{\circ}$	B1
	Area of $A B C=\frac{1}{2} \times(\sqrt{48})^{2} \times \sin 120=12 \sqrt{3}(=20.78 \ldots)$	M1A1
	$\text { Area of } A D C=\frac{1}{2} \times 12 \times 8 \times \sin (24.3576 \ldots)=19.7966 \ldots$	M1A1
	Area of $A B C D=40.5812 \ldots=40.6 \mathrm{~cm}^{2}$ (3sf)	A1
		(6)
	ALT $\left[A D=\frac{8 \sin \left(' 24.3576 . .{ }^{\prime}\right)}{\sin (35)}=5.7524 . .\right]$	(B1)
	$\text { Area of } A B C=\frac{1}{2} \times(\sqrt{48})^{2} \times \sin 120=12 \sqrt{3}$	(M1A1)
	$\text { Area } A D C=\frac{1}{2} \times 5.752 \ldots \times 8 \times \sin (120.6424 \ldots)=19.7966 \ldots$	(M1A1)
	Area of $A B C D=40.5812 \ldots=40.6 \mathrm{~cm}^{2}(3 \mathrm{sf})$	$\begin{aligned} & \text { (A1) } \\ & \text { (6) } \end{aligned}$
		(11)

Notes		
(a)	M1	Uses a correct cosine rule to find length $A B$
	A1	For $A B=4 \sqrt{3}$
ALT 1		
(a)	M1	For using a correct sine rule to find length $A B$
	A1	For $A B=4 \sqrt{3}$
ALT 2		
(a)	M1	Divides triangle $A B C$ into two congruent right angle triangles. $A B=\frac{6}{\sin 60^{\circ}}$
	A1	For $A B=4 \sqrt{3}$
(b)	M1	For using a correct sine rule to find $\angle A D C$
	A1	For the acute angle resulting from their sine rule $=59.357 \ldots{ }^{\circ}$ (accept minimum accuracy of 59.4°)
	A1	For the correct obtuse angle $\angle A D C=120.6^{\circ}$
The general principle of marking part (c) is; First M1A1 for triangle $A B C$, second M1A1 for triangle $A D C$		
(c)	B1	$\angle A C D=24.3576^{\circ}$ (accept minimum accuracy of 24.4 ${ }^{\circ}$)
	M1	Area of $\triangle A B C$ using correct formula for area of a triangle using 120° and their length $A B$ or $B C$ (but their $A B=B C$)
	A1	Area $\triangle A B C=12 \sqrt{3}$ (oe., accept minimum accuracy of 20.8)
	M1	Area of $\triangle A D C$ using correct formula and their $\angle A D C$ and the given lengths 12 cm and 8 cm .
	A1	Area $\triangle A D C=19.79662 \ldots$ (accept minimum 19.8)
	A1	Area of quadrilateral $A B C D=40.6\left(\mathrm{~cm}^{2}\right)$
ALT 1		
(c)	B1	For finding length $A D=5.7524$. . (accept minimum accuracy of 5.7)
	M1	Area of $\triangle A B C$ using correct formula for area of a triangle using 120° and their length $A B$ or $B C$ (but their $A B=B C$)
	A1	For substitution of correct values. [Area $\triangle A B C=12 \sqrt{3}$ (oe., accept minimum accuracy of 20.8)]
	M1	Area of using correct formula and their $A D$ and the given length 12 cm and angle 35°.
	A1	For substitution of correct values. [Area $\triangle A D C=19.79662 \ldots$ (accept minimum 19.8)]
	A1	Area of quadrilateral $A B C D=40.6\left(\mathrm{~cm}^{2}\right)$
ALT 2		
(c)	B1	Divides triangle $A B C$ into two congruent right angle triangles. (midpoint of $A B$ is M) $B M=\frac{6}{\tan 60^{\circ}}=2 \sqrt{3} \text { accept } 3.46 \ldots$
	M1	Area of $\triangle A B C$ using $2 \times$ correct formula for area of a triangle $2 \times \frac{1}{2} \times 6 \times \prime 2 \sqrt{3}{ }^{\prime}=' 12 \sqrt{3}^{\prime}$,
	A1	Area $\triangle A B C=12 \sqrt{3}$ (oe., accept minimum accuracy of 20.8)
Areas of $\triangle A D C$ and quadrilateral $A B C D$ as above.		

Useful Sketch

Area $A B C=12 \sqrt{3}$ or $20.78 \ldots \mathrm{~cm}^{2}$
Area of $A D C=19.79 \ldots \mathrm{~cm}^{2}$
Total area $=40.6 \mathrm{~cm}^{2}$

Penalise rounding only once. If they their answer to (b) as awrt120.6 (e.g.120.64) deduct the A mark. If they then give their answer to (c) as 40.61 do not penalise.

Question number		Scheme	Marks
6. (a)		$a=2, b=3$	$\begin{array}{\|l} \mathrm{B} 1 \mathrm{~B} 1 \\ (2) \end{array}$
(b)		At intersection of the curve with the y-axis, $x=0$	
		$y=\frac{3 \times 0+c}{0+2^{\prime}}=\frac{c}{'^{\prime}}\left(=\frac{7}{2}\right) \Rightarrow c=7$	M1A1 (2)
(c)		At intersection of the curve with the x-axis, $y=0$	
		$0=\frac{' 3 '^{\prime} x+'^{\prime}}{x+2^{\prime}} \Rightarrow{ }^{\prime} 3^{\prime} x+{ }^{\prime} 7 \text { ' }=0 \Rightarrow x=-\frac{7}{3} \Rightarrow s=-\frac{7}{3}$	M1A1ft (2) (6)
Notes			
(a)	B1	For $a=2$ or $b=3$	
	B1	For $a=2$ and $b=3$	
(b)	M1	For using the given equation and setting $x=0$ and achieve a value for c for the award of this mark Follow through their values for a and b. If their b the letter b allow $b \times 0=0$.	y must y even use
	A1	$c=7$	
(c)	M1	Uses their values for a, b and c and sets $y=0$. Th for the award of this mark	value for x
	A1ft	For $s=-\frac{7}{3}$	

$\begin{array}{\|l} \hline \text { Ques } \\ \text { num } \\ \hline \end{array}$	stion nber	Scheme									Marks
7.		x	0	1	2	3	4	5	6	7	B1B1 (2)
(a)		y	2	3.79	4.40	4.77	5.04	5.26	5.43	5.58	
(b)		Correct points plotted									B1B1 (2)
(c)		$\ln (5 x+1)=x \Rightarrow \ln (5 x+1)+2=x+2$									M1M1A1 (3)
(d)		$\mathrm{e}^{(3 x-1)}=5 x+1 \Rightarrow 3 x-1=\ln (5 x+1) \Rightarrow 3 x+1=\ln (5 x+1)+2$									M1M1
		Line $\quad y=3 x+1$ drawn on graph $\Rightarrow x=0.9$									M1A1 (4)
											(11)
Notes											
(a)	B1	For any two of three correct values, correctly rounded									
	B1	For all three correct values, correctly rounded									
NB: Accept for B0B1 three values which all round to the correctly rounded values.											
(b)	B1ft	Their points plotted correctly to within half of one square									
	B1ft	Their points joined up in a smooth curve from $x=1$ onwards. Allow a straight line between $x=0$ and 1 .									
Note: these follow through marks are from their table only.											
(c)	M1	For forming the linear equation $\ln (5 x+1)+2=x+2$ or for identifying that the line with equation $y=x+2$ is required. This can be implied from a correct line drawn.									
	M1	For drawing their ' $y=x+2$ ' Coordinates of the correct line $y=x+2$ are $(0,2)$ $(1,3),(2,4),(3,5)$ etc									
	A1	For $x=2.6$ or 2.7 (Note: must be 1 dp)									
(d)	M1	For taking natural logarithms of both sides of the given equation to give $3 x-1=\ln (5 x+1)$									
	M1	For forming the linear equation $\ln (5 x+1)+2=3 x+1$ or for identifying that the line with equation $y=3 x+1$ is required. This can be implied from a correct line drawn.									
	M1	For drawing their ' $y=3 x+1$ '. Coordinates of the correct line $y=3 x+1$ are $(0,1),(1,4)$									
	A1	For $x=0.9$ Do not penalise rounding in (d) if penalised in (c). The value in (d) must round to 0.9 .									

Question number		Scheme	Marks
8.(a) (i)		$\begin{aligned} & \left(1+\frac{x}{2}\right)^{-3}=\left[1+(-3)\left(\frac{x}{2}\right)+\frac{(-3)(-4)}{2!}\left(\frac{x}{2}\right)^{2}+\frac{(-3)(-4)(-5)}{3!}\left(\frac{x}{2}\right)^{3} \cdots \cdots \cdots\right] \\ & =1-\frac{3 x}{2}+\frac{3 x^{2}}{2}-\frac{5 x^{3}}{4} \end{aligned}$	M1 A1A1
(ii)		$-2<x<2$	B1 (4)
(b)		$(2+x)^{-3}=2^{-3} \cdot\left(1+\frac{x}{2}\right)^{-3}=\frac{1}{8} \cdot\left(1+\frac{x}{2}\right)^{-3} \text { so, } A=\frac{1}{8}, \quad B=\frac{1}{2}$	B1B1 (2)
(c)		$\frac{(1+4 x)}{(2+x)^{3}}=(1+4 x)\left(\frac{1}{8}-\frac{3 x}{16}+\frac{3 x^{2}}{16}-\frac{5 x^{3}}{32} \ldots\right)=\frac{1}{8}+\frac{5 x}{16}-\frac{9 x^{2}}{16} \ldots$	M1A1 (2)
(d)		$\int_{0}^{0.2} \frac{(1+4 x)}{(2+x)} \mathrm{d} x=\int_{0}^{0.2} \frac{1}{8}+\frac{5 x}{16}-\frac{9 x^{2}}{16} \mathrm{~d} x=\left[\frac{x}{8}+\frac{5 x^{2}}{32}-\frac{3 x^{3}}{16}\right]_{0}^{0.2}=0.0298$	M1dM1A1 (3) (11)
		Notes	
(a) (i)	M1	For an attempt at a binomial expansion. There must be as a minimum; the expansion must start with 1 ; there must be a minimum of 4 terms (accept a list); the power of x must be correct; the factorial denominator must be correct. $\frac{x}{2}$ must be seen at least once.	
	A1	Two terms in x simplified and correct	
	A1	Fully correct as shown ie., $\quad 1-\frac{3 x}{2}+\frac{3 x^{2}}{2}-\frac{5 x^{3}}{4}$	
(ii)	B1	For $-2<x<2$ or $\|x\|<2$	
(b)	B1	For $A=\frac{1}{8}$ OR $B=\frac{1}{2}$ or embedded as $\frac{1}{8}\left(1+\frac{1}{2} x\right)^{-3}$ OR $\frac{1}{8}\left(1+\frac{x}{2}\right)^{-3}$	
	B1	For $A=\frac{1}{8}$ AND $B=\frac{1}{2}$ or embedded as $\frac{1}{8}\left(1+\frac{1}{2} x\right)^{-3}$ AND $\frac{1}{8}(1$	$\left(1+\frac{x}{2}\right)^{-3}$
(c)	M1	For expanding ($1+4 x)$ (their A$)$ (their expansion from (a) at least as far as x^{2})	
	A1	Fully correct as shown $\frac{1}{8}+\frac{5 x}{16}-\frac{9 x^{2}}{16}$ ignore further terms	
(d)	M1	For attempting to integrate their answer to part (c) (minimum of two terms) For an attempt to integrate, see general guidance	
	dM1	For substituting 0.2 (0 not required) into their integrated expression.	
	A1	For a value of 0.0298 only	
Note: If there is no evidence of integration in (d) M0M0A0			

Question number	Scheme	Marks
9. (a) (i)	$\alpha+\beta=\left(\frac{4}{3}\right)$	B1
(ii)	$\alpha \beta=\frac{6}{3}=2$	B1
(b)		
(b)	$\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta) \Rightarrow\left(\frac{4}{3}\right)^{3}-3 \times 2 \times\left(\frac{4}{3}\right)=-\frac{152}{27} *$	M1M1A1
(c)	$\frac{\alpha}{\beta^{2}}+\frac{\beta}{\alpha^{2}}=\frac{\alpha^{3}+\beta^{3}}{\alpha^{2} \beta^{2}}=\frac{-\frac{152}{27}}{4}=-\frac{38}{27}$	(3)
	$\frac{\alpha}{\beta^{2}} \times \frac{\beta}{\alpha^{2}}=\frac{1}{\alpha \beta}=\frac{1}{2}$	M1A1
	$x^{2}+\frac{38}{27} x+\frac{1}{2}=0 \Rightarrow 54 x^{2}+76 x+27=0$	B1
		oe (integer multiples)

| (a)
 (i) B1
 (ii) B1
 (b) M1For the sum $\alpha+\beta=\left(\frac{4}{3}\right)$
 $\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$
 $\alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right)$
 $\alpha^{3}+\beta^{3}=(\alpha+\beta)\left((\alpha+\beta)^{2}-3 \alpha \beta\right)$
 Their final expansion must be given in a form such that they can substitute
 their sum and product directly. | |
| :--- | :--- | :--- |
| | M1 $\alpha=\frac{6}{3}$ oe
 For substituting their values for the sum and product into their $\alpha^{3}+\beta^{3}$
 Note $\alpha^{2}+\beta^{2}=-\frac{20}{9}$ |
| | For $-\frac{152}{27}$ Note: This is a 'show' question. Every step must be correct for
 the award of this mark. |

(c)	M1	For the correct algebra on the sum $\frac{\alpha}{\beta^{2}}+\frac{\beta}{\alpha^{2}}=\frac{\alpha^{3}+\beta^{3}}{\alpha^{2} \beta^{2}}$ and substitution of their $\alpha+\beta$ and $\alpha \beta$.
	A1	For the correct sum of $-\frac{38}{27}$ allow $\frac{-\frac{152}{27}}{4}$
	B1	For the correct product of $\frac{1}{2}$
	M1	For using their sum and their product correctly to form an equation. $\left(x^{2}+(-\right.$ sum $) \times x+$ product $)=0 \quad($ condone missing $=0)$
	A1	For the correct equation as shown. Accept any integer multiples. e.g $108 x^{2}+152 x+54=0$ etc
$\begin{array}{\|l\|} \hline \text { ALT } \end{array}$ (c)	M1	Attempts to form the equation as follows. Must be -ve sum, + ve product $\left(x-\frac{\alpha}{\beta^{2}}\right)\left(x-\frac{\beta}{\alpha^{2}}\right)=x^{2}-\left(-x\left(\frac{\alpha}{\beta^{2}}+\frac{\beta}{\alpha^{2}}\right)\right)+\frac{\alpha \beta}{(\alpha \beta)^{2}}(=0)$
	M1	$\left(x-\frac{\alpha}{\beta^{2}}\right)\left(x-\frac{\beta}{\alpha^{2}}\right)=x^{2}-\left(-x\left(\frac{\alpha^{3}+\beta^{3}}{\alpha^{2} \beta^{2}}\right)\right)+\frac{\alpha \beta}{(\alpha \beta)^{2}} \quad$ Correct algebra only
	$\begin{aligned} & \text { First } \\ & \text { A1 } \end{aligned}$	$\left(x-\frac{\alpha}{\beta^{2}}\right)\left(x-\frac{\beta}{\alpha^{2}}\right)=x^{2}+x\left(\frac{\frac{\mathbf{1 5 2}}{\mathbf{2 7}}}{\mathbf{4}}\right)+\frac{\alpha \beta}{(\alpha \beta)^{2}}=x^{2}+x\left(\frac{\mathbf{3 8}}{\mathbf{2 7}}\right)+\frac{\alpha \beta}{(\alpha \beta)^{2}}$
	B1	$\left(x-\frac{\alpha}{\beta^{2}}\right)\left(x-\frac{\beta}{\alpha^{2}}\right)=x^{2}+x\left(\frac{38}{27}\right)+\frac{\mathbf{2}}{\mathbf{4}}$
	$\begin{aligned} & \text { Final } \\ & \text { A1 } \end{aligned}$	$x^{2}+\frac{38}{27} x+\frac{1}{2}=0 \Rightarrow 54 x^{2}+76 x+27=0$ oe with integer multiples

Notes		
(a)	M1	For an attempt to differentiate the given v. See general guidance for the definition of an attempt
	A1	For the correct $a=3 t^{2}-8 t+5$
(b)	M1	Sets their $a=0$ and attempts to solve their 3TQ. They must achieve 2 values only for t for the award of this mark.
	A1	For $t=\frac{5}{3}, 1$
Please check the whole method in part (c) before you begin to award marks.		
(c)	M1	Attempts to integrate the given v. See general guidance for the definition of an attempt. Award this mark if the constant of integration is not seen.
	A1	For the correct integrated expression for s, which must include $+c$.
	B1	For $c=3$ (Or any other letter given for the constant of integration)
	dM1	For substituting the value of $t=2$ into an integrated expression
	A1	For $s=8 \frac{1}{3}$
ALT 1		
(c)	M1	Attempts to integrate the given v. See general guidance for the definition of an attempt. The limits of integration not required for this mark
	A1	For the correct integrated expression
	B1	For +3
	dM1	For substituting their limits of integration.
	A1	For $s=8 \frac{1}{3}$ Note: if their limits were the wrong way around they will achieve $s=-8 \frac{1}{3}$. Even if they give the final answer as $s=8 \frac{1}{3}$ this is A0.
ALT 2 Only apply this scheme when see they have added the additional displacement of 3 m at $t=0$		
	M1	Attempts to integrate the given v. See general guidance for the definition of an attempt. The limits of integration not required for this mark
	A1	For the correct integrated expression $+c$ not required
	dM1	For substituting the value of $t=2$ into an integrated expression
	A1	For achieving $s=\frac{16}{3}$
	B1	For adding 3 to their s to achieve $s=\frac{25}{3}$ oe

Question number	Scheme	Marks
11. (a)	Mark parts (i) and (ii) together $\mathrm{f}^{\prime}(x)=p+2 q x=0 \Rightarrow p+2 q(3)=0 \Rightarrow p+6 q=0$	M1
	$9=p(3)+q(3)^{2} \Rightarrow 9=3 p+9 q \Rightarrow(3=p+3 q)$	M1A1
	Solves simultaneous equations by substitution or elimination	
	(i) $[6 p+q=0]-[3=p+3 q]=3 q=-3 \Rightarrow q=-1 \Rightarrow p=6$	M1A1
	$q=-1$	B1
	(ii) $\mathrm{f}^{\prime \prime}(x)=-2 \Rightarrow$ negative constant so point is a maximum	B1 (7)
(b)(c)	$-x+10=6 x-x^{2} \Rightarrow 0=x^{2}-7 x+10 \Rightarrow(x-2)(x-5)=0 \Rightarrow x=2,5$	M1M1A1 (3)
	$\text { Volume }=\pi \int_{2}^{5}\left(-x^{2}+6 x\right)^{2} \mathrm{~d} x-\pi \int_{2}^{5}(-x+10)^{2} \mathrm{~d} x$	M1
(c)	$\text { Volume }=\pi \int_{2}^{5}\left\{\left(x^{4}-12 x^{3}+36 x^{2}\right)-\left(x^{2}-20 x+100\right)\right\} \mathrm{d} x$	
	$=\pi\left[\frac{x^{5}}{5}-3 x^{4}+\frac{35}{3} x^{3}+10 x^{2}-100 x\right]_{2}^{5}$ (or integrate without simplification)	M1A1
	$=\pi\left[625-3 \times 625+\frac{35 \times 125}{3}+250-500\right]-\left[\frac{32}{5}-48+\frac{35 \times 8}{3}+40-200\right]$	M1
	$V=\frac{333 \pi}{5}$	
		(5)
		(15)

Notes		
(a)	M1	Attempts to differentiate the given equation for curve C, equates to 0 , and substitutes in $x=3$ to form an equation in p and q.
	M1	Substitutes (3,9) into the given equation to form an equation in p and q.
	A1	For both correct equations; $p+6 q=0$ and $3=p+3 q$ or any equivalent to either equation.
	M1	Attempts to solve the simultaneous equations by any method.
	A1	For $p=6$. This is a show so check that the method is correct.
	B1	For $q=-1$
	B1	Finds the second derivate, substitutes the value of q and finds $\mathrm{f} "(x)=-2$ with a conclusion hence maximum. E.g. Minimally acceptable -2 hence maximum
		OR Completes the square to show that the maximum value of y is 9 when $x=3$ $y=-x^{2}+6=-\left(x^{2}-6\right)=-\left[(x-3)^{2}-9\right]=-(x-3)^{2}+9$ with a conclusion that the maximum value of $y=9$ occurs when $x=3$
(b)	M1	Sets the equation of $l=$ equation of c with their values of p and q and forms a 3TQ.
	M1	Attempts to solve their 3TQ by any method, but must achieve two values of x.
	A1	For $x=2,5$
Marks in part (c) are dependent on their method being dimensionally correct and complete		
(c)	Method 1 (Combined integration)	
	M1	For a statement using the correct formula for the volume of rotation $V=\pi \int y^{2} \mathrm{~d} x$, using the equation for C with their value of q, minus the equation for line l rearranged to make y the subject. Ignore missing $\mathrm{d} x$ and ignore limits for this mark. π must be present and the equations must be squared.
	M1	For integrating their statement for V. Their limits of integration found in (b) must be shown, the correct way around for the award of this mark. The highest power of x must be a term in x^{4}. Ignore missing π for this mark.
	A1	For the correct integrated expression for V, complete with limits. It need not be simplified for this mark and ignore missing π for this mark.
	ddM1	For substituting in both of their values from (b) and subtracting them.
	A1	For the correct volume in terms of π only of $V=\frac{333 \pi}{5}$ or 66.6π oe. isw erroneous attempts to simplify after 66.6π oe seen

