Mark Scheme (Results)
Summer 2016

Pearson Edexcel International GCSE in Further Pure Mathematics Paper 2 (4PMO/02)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 4PM0_02_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
o M marks: method marks
o A marks: accuracy marks. Can only be awarded if the relevant method mark(s) has (have) been gained.
o B marks: unconditional accuracy marks (independent of M marks)

- Abbreviations

o cao - correct answer only
o ft - follow through
o isw - ignore subsequent working
o SC-special case
o oe - or equivalent (and appropriate)
o dep-dependent
o indep - independent
o eeoo - each error or omission

- No working

If no working is shown then correct answers may score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated always check the working and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread which does not significantly simplify the question loses two A (or B) marks on that question, but can gain all the M marks. Mark all work on follow through but enter A 0 (or BO) for the first two A or B marks gained.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there are multiple attempts shown, then all attempts should be marked and the highest score on a single attempt should be awarded.

- Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially shows that the candidate did not understand the demand of the question.

- Linear equations

Full marks can be gained if the solution alone is given, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q) \text { where }|p q|=|c| \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q) \text { where }|p q|=|c| \text { and }|m n|=|a|
\end{aligned}
$$

2. Formula:

Attempt to use the correct formula (shown explicitly or implied by working) with values for a, b and c, leading to $\mathrm{x}=\ldots .$. .

3. Completing the square:

Solving $x^{2}+b x+c=\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c$ where $q \neq 0$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1 .
2. Integration:

Power of at least one term increased by 1 .

Use of a formula:

Generally, the method mark is gained by
either quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values
or, where the formula is not quoted, the method mark can be gained by implication from the substitution of correct values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers may be awarded no marks".
General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show....

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

Question Number	Scheme	Mar
1 (a)	$\begin{aligned} & \cos \theta^{\circ}=\frac{8^{2}+9^{2}-10^{2}}{2 \times 8 \times 9} \\ & \theta^{\circ}=71.79 \ldots=71.8^{\circ} \end{aligned}$	M1A1 A1 cao
(b)	Area $=\frac{1}{2} a b \sin C=\frac{1}{2} \times 8 \times 9 \sin 71.79 \ldots$ $=34.19 \ldots=34.2\left(\mathrm{~cm}^{2}\right) \quad($ Use of 71.8 also gives 34.2)	$\begin{array}{\|l} \text { M1 } \\ \text { A1ca } \\ \hline \end{array}$
(a)M1	Cosine rule for any angle of the triangle; can be in either form but formula must be correct Correct numbers in the cosine rule. Must be the correct angle (ie largest) Identify $\theta=71.8^{\circ}$ Must be to nearest 0.1° Find at least 2 angles by cosine and possibly sine rule. (can be any 2 of the angles) M1A1 $\theta=71.8^{\circ}$ Must be to nearest 0.1° A1 Any complete method to find the area of the triangle (use any angle found in (a) with the sides enclosing it) 34.2 Must be to 3sf unless rounding already penalised in (a)	
A1		
A1cao		
ALT:		
(b)		
M1		
A1cao		

Question Number	Scheme	Marks
2 (a) (b)	$\begin{aligned} & \overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A},=(3 \mathbf{i}+9 \mathbf{j})-(6 \mathbf{i}+5 \mathbf{j})=-3 \mathbf{i}+4 \mathbf{j} \\ & \frac{\lambda}{12}=\frac{4}{(-) 3}, \quad \lambda=-16 \end{aligned}$	$\begin{array}{\|l} \text { M1,A1cao (2) } \\ \text { M1,A1cao (2) } \end{array}$
ALT: (c)	$\begin{aligned} & \overrightarrow{P Q}=\mu \overrightarrow{A B} \quad 12 \mathbf{i}+\lambda \mathbf{j}=\mu(-3 \mathbf{i}+4 \mathbf{j}) \text { M1 (Their } \overrightarrow{A B}) \text { Allow } \mu=\frac{12 \mathbf{i}+\lambda \mathbf{j}}{-3 \mathbf{i}+4 \mathbf{j}} \\ & \mu=-4 \quad \lambda=-16 \quad \text { A1 } \\ & \|\overrightarrow{A B}\|=\sqrt{\left(3^{2}+4^{2}\right)}=5 \text { or }\|\overrightarrow{P Q}\|=20 \\ & = \pm \frac{1}{5}(3 \mathbf{i}-4 \mathbf{j}) \text { oe } \end{aligned}$	M1 A1 (2)
		[6]
(a)M1 A1cao	$\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$ or $\overrightarrow{O B}+\overrightarrow{A O}$ or use a diagram. Column vectors allowed for the M mark. $-3 \mathbf{i}+4 \mathbf{j}$ or $4 \mathbf{j}-3 \mathbf{i}$ or $\binom{-3 \mathbf{i}}{4 \mathbf{j}}$ but \mathbf{i}, \mathbf{j} must be included	
(b)M1	Finding and equating the gradients of the two lines. Fractions can be either way up as long as consistent and attempting to solve for λ There may be sign errors in the equation. Or compare the components. NB: Using $\overrightarrow{P Q}=\overrightarrow{A B}$ scores M0 unless a fresh start is made.	
A1cao	$\lambda=-16$	
$\begin{gathered} \text { (c)M1 } \\ \text { A1 } \\ \hline \end{gathered}$	Use Pythagoras with a + sign to obtain the length of their $A B$ or their $P Q$ A correct unit vector in either direction and any equivalent form inc column vector	

$\begin{array}{c}\text { Question } \\ \text { Number }\end{array}$	Scheme	Marks		
$\mathbf{4}$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \mathrm{e}^{2 x} \cos 3 x-3 \mathrm{e}^{2 x} \sin 3 x$	M1A1A1		
$[3]$			$]$	A1
:---				
M1				
Aifferentiate wrt x. Two terms either added or subtracted. Terms to be one of each of				
$p \mathrm{e}^{2 x} \cos 3 x$ and $q \mathrm{e}^{2 x} \sin 3 x$ where p and q are integers.				
NB				
The other correct correct				
If the product rule is quoted and brackets omitted on application eg				
$2 \mathrm{e}^{2 x} \cos 3 x+\mathrm{e}^{2 x}-3 \sin 3 x$ allow for "invisible brackets" and award M1A1A0. If final				
statement fully correct award M1A1A1				

Question Number	Scheme	Marks
6 (a)	$5 x+4=x^{2}+2 x-6$	M1
	$x^{2}-3 x-10(=0)$	A1
	$(x-5)(x+2)(=0)$	
	$x=5 \quad y=29 ; \quad x=-2 y=-6$	M1A1A1 (5)
(b)	$\int_{-2}^{5}\left((5 x+4)-\left(x^{2}+2 x-6\right)\right) \mathrm{d} x \quad$ (either way round)	M1
	$\int_{-2}^{5}\left(-x^{2}+3 x+10\right) \mathrm{d} x$	
	$\left[-\frac{1}{3} x^{3}+\frac{3}{2} x^{2}+10 x\right]_{-2}^{5} \quad \begin{aligned} & \text { (Correct integration of a function, either way } \\ & \text { round or correct integration of two sep functions) } \end{aligned}$	M1A1
	$=\left(-\frac{125}{3}+\frac{75}{2}+50\right)-\left(\frac{8}{3}+6-20\right)$	dM1
	$=57 \frac{1}{6}, \frac{343}{6} \quad$ must be positive	A1cao (5)
		[10]
(a)		
M1	Eliminate y or x between the two equations to obtain an equation in a single variable	
A1	Correct 3 term quadratic	
M1	Solve their 3 TQ to $x=\ldots$ or $y=\ldots$ Calculator solutions must have $x=-2$ and 5 or $y=-6$ and 29 ie both solutions for their variable.	
A1	Either pair of coordinates correct	
A1	Second pair correct. Coordinate brackets not needed but some indication of pairing is needed	
NB	Table of values methods score 0/5	
(b)		
M1	For the integral of "line - curve", either way round. Ignore any limits shown. This mark can be given later if two separate integrals are used - give when the difference of the two integrals is shown.	
M1	Integration of the function, either way round or correct integration of two separate functions	
A1	Correct integration. Ignore limits for these two marks.	
dM1	Substitute their limits (ie their values found in (a)) in the integral of the single function or in both integrals. Both the above M marks must be earned.	
A1cao	Area $=57 \frac{1}{6}$ oe must be positive.	
NB	If only the line or the curve is integrated score is $0 / 5$	

Question Number	Scheme	Marks
7(a)	$\begin{aligned} & \frac{\mathrm{d} v}{\mathrm{~d} t}=6 t-4 \\ & t=2 \quad \text { accel }=8\left(\mathrm{~m} / \mathrm{s}^{2}\right) \end{aligned}$	M1 A1 (2)
(b)	v is min when $\frac{\mathrm{d} v}{\mathrm{~d} t}=0$ ie when $t=\frac{2}{3}$	M1
	$v_{\min }=3 \times\left(\frac{2}{3}\right)^{2}-4 \times \frac{2}{3}+7=5 \frac{2}{3}(\mathrm{~m} / \mathrm{s}) \quad\left(\text { Accept } 5.67, \frac{17}{3}\right)$	M1A1 (3)
(c)(d)	$V=7$	B1 (1)
	$3 t^{2}-4 t+7=7$	
(d)	$t(3 t-4)=0 \quad(t=0) t=\frac{4}{3}$	B1
	$A B=\int_{0}^{\frac{4}{3}}\left(3 t^{2}-4 t+7\right) \mathrm{d} t$	M1
	$=\left[t^{3}-2 t^{2}+7 t\right]_{0}^{\frac{4}{3}}$	M1A1
	$=\left(\frac{4}{3}\right)^{3}-2 \times\left(\frac{4}{3}\right)^{2}+7 \times \frac{4}{3}(-0)$	dM1
	$=8 \frac{4}{27}(\mathrm{~m}), \frac{220}{27}$ (Accept 8.15 or better)	A1cao,cso (6)
		[12]

(a)	
M1	Differentiate given expression for v wrt t. Power must decrease on at least one term
A1	Substitute $t=2$ and obtain accel $=8\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
	Correct answer with no working shown Award both marks
(b)	
M1	Set their $\frac{\mathrm{d} v}{\mathrm{~d} t}=0$ and solve to $t=\ldots$ or deduce the nec value of t from work in (a)
M1	Substitute their value of t in the GIVEN expression for v
A1	$5 \frac{2}{}$ or $\frac{17}{3}$ or 5.67 Decimal to be 3 sf or better
	$5 \frac{-}{3}$ or $\frac{1}{3}$ or 5.67 Decimal to be 3 sf or better
	Correct answer with no working Award 3/3
ALT	Complete the square on $v \quad v=3\left(t-\frac{2}{3}\right)^{2}+7-\ldots \quad$ M1
	Identify the constant " $7-\frac{4}{3}$ " as the min or take $t=\frac{2}{3}$ from bracket and substitute M1 Correct answer A1
(c)	
B1	$(V=) 7$ Need not say $V=$
(d)	
B1	Equate the expression for v to 7 and solve to obtain $t=4 / 3$ No need to show $t=0$
M1	Form the required integral with lower limit $=0$ and their value of t as the upper limit Do NOT give this mark until limits are seen.
$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { dM1 } \end{gathered}$	Attempt the integration. Power to increase on at least one term.
	Correct integration
	Substitute their upper limit in a changed function. Depends on the first M mark but not the second. Sub of lower limit need not be seen (it gives 0)
$\begin{gathered} \text { A1cao } \\ \text { cso } \\ \text { ALT: } \end{gathered}$	$8 \frac{4}{27}$ or $\frac{220}{27}$ Decimal to be 3 sf or better
	By Indefinite integration:
	B1 As above; M1 Do NOT award until $t=0$ is used to find the constant of integration M1A1 for the integration constant can be omitted dM1A1 as above

8(a)
B1 $x=-\frac{2}{3}$ oe eg $3 x=-2,3 x+2=0 \quad$ Must be an equation
(b)

M1 Attempt to differentiate using the quotient or product rule.
For quotient rule, the numerator must be the difference of 2 terms and the denominator must be $(3 x+2)^{2}$
For the product rule the difference of 2 terms is required and both terms must contain $(3 x+2)^{-k}$, where $k=1$ or 2
A1 For quotient rule, either term correct apart from sign
For product rule, either term correct

A1
M1
A1
M1
A1
A1
(c)

B1
(d)

B1

B1
Vertical asymptote drawn and labelled either with its equation or by the point where it crosses the x-axis. At least one branch of the curve must be asymptotic to the line and neither branch should cross it.

B1
(e)

B1
Completely correct derivative.
Equate their numerator to 0 . (For product rule use, equate their whole derivative to 0) Simplify to the correct 3 term quadratic. Terms can be in any order.
Attempt the solution of their 3 term quadratic
Two correct values for x
Corresponding correct values for y. No need to write in coordinate brackets.
$\left(0,-\frac{1}{2}\right)$ or $x=0, y=-\frac{1}{2}$

Show the required coordinates on their sketch beside their turning points or indicated by arrow(s).

Gradient of the normal seen explicitly or used.
Any complete method for the equation of a line using their gradient of the normal at A and their coordinates of A

Question Number	Scheme	Marks
$\begin{gathered} 9 \\ \text { (a) } \end{gathered}$	$\cos (\theta+\theta)=\cos \theta \cos \theta-\sin \theta \sin \theta$	M1
(a)	$\cos 2 \theta=\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)$	M1
	$\cos 2 \theta=2 \cos ^{2} \theta-1 *$	A1cso (3)
(b)	$\sin 2 \theta=2 \sin \theta \cos \theta$	B1 (1)
(c)	$\cos 3 \theta=\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta$	M1
	$=\left(2 \cos ^{2} \theta-1\right) \cos \theta-2 \sin \theta \cos \theta \sin \theta$	M1
	$=2 \cos ^{3} \theta-\cos \theta-2\left(1-\cos ^{2} \theta\right) \cos \theta$	M1
	$=4 \cos ^{3} \theta-3 \cos \theta$ *	A1cso (4)
(d)	$1=8 \cos ^{3} \theta-6 \cos \theta=2 \cos 3 \theta$	
	$\cos 3 \theta=\frac{1}{2}$	M1
	$3 \theta=\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3}$	M1
	$\theta=\frac{\pi}{9}, \frac{5 \pi}{9}, \frac{7 \pi}{9}$	A1A1 (4)
(e)	$\int\left(8 \cos ^{3} \theta+4 \sin \theta\right) \mathrm{d} \theta=\int(2 \cos 3 \theta+6 \cos \theta+4 \sin \theta) \mathrm{d} x$	M1
	$=\frac{2}{3} \sin 3 \theta+6 \sin \theta-4 \cos \theta(+c)$	A1
(ii)	$=\frac{2}{3} \sin \pi+6 \sin \frac{\pi}{3}-4 \cos \frac{\pi}{3}-(-4 \cos 0)$	dM1
	$=6 \times \frac{\sqrt{3}}{2}-2+4=3 \sqrt{3}+2$	A1cao cso (4)
		[16]

(c)

M1 Use $t=10$ to obtain the corresponding value of $h \quad h=\left(\sqrt[3]{\frac{180}{5 \pi}}\right.$ or $\left.2.2545 \ldots\right)$ and substitute their value of h in the expression from (b) to obtain $\frac{\mathrm{d} A}{\mathrm{~d} t}=\ldots$
A1cao $\quad \frac{\mathrm{d} A}{\mathrm{~d} t}=0.355\left(\mathrm{~cm}^{2} / \mathrm{s}\right) \quad$ Must be 3 sf .

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL

