Write your name here

| Further Pure Mathematics |
| :--- | :--- |
| Paper 1 |\quad| Paper Reference |
| :--- |
| 4PM0/01 |
| Tuesday 14 June 2016 - Morning
 Time: 2 hours |

Calculators may be used.
Total Marks

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
- there may be more space than you need.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Answer all TEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1

$$
\mathrm{f}(x)=x^{3}-7 x+6
$$

(a) Show that $(x-2)$ is a factor of $\mathrm{f}(x)$
(b) Hence, or otherwise, factorise $\mathrm{f}(x)$ completely.

Question 1 continued

2 (a) Expand $\left(1+3 x^{2}\right)^{-\frac{1}{3}}, 3 x^{2}<1$, in ascending powers of x, up to and including the term in x^{6}, simplifying each term as far as possible.

$$
\mathrm{f}(x)=\frac{1-k x^{2}}{\left(1+3 x^{2}\right)^{\frac{1}{3}}} \text { where } k \text { is a constant }
$$

(b) Obtain a series expansion for $\mathrm{f}(x)$ in ascending powers of x up to and including the term in x^{4}.

Given that the coefficient of x^{2} in the expansion of $\mathrm{f}(x)$ is -5
(c) find the value of k.

Question 2 continued

3 A right pyramid $A B C D E$ has a square base $A B C D$ of side 10 cm . The height of the pyramid is 8 cm .
(a) Find, to 3 significant figures, the length of $A E$.
(b) Find, in degrees to the nearest degree, the size of the angle between the plane $A B E$ and the base $A B C D$.

Question 3 continued

4 The nth term of an arithmetic series is t_{n} and the sum of the first n terms of the series is S_{n}
Given that $S_{2}=\frac{2}{3} t_{5}$ and that $S_{4}=t_{10}+3$
(a) find
(i) the common difference of the series,
(ii) the first term of the series.

Given also that $S_{p+2}-S_{p}=110$
(b) find the value of p.

Question 4 continued

5 Using the identities

$$
\begin{gathered}
\sin (A+B)=\sin A \cos B+\cos A \sin B \\
\tan A=\frac{\sin A}{\cos A}
\end{gathered}
$$

(a) show that the equation

$$
3 \sin (x+\alpha)=5 \sin (x-\alpha)
$$

can be written in the form $\tan x=4 \tan \alpha$
(b) Hence solve, to the nearest integer, the equation

$$
\begin{equation*}
3 \sin (2 y+30)^{\circ}=5 \sin (2 y-30)^{\circ} \quad \text { for } 90 \leqslant y<180 \tag{4}
\end{equation*}
$$

Question 5 continued

Question 5 continued

Question 5 continued

6 Solve
(a) $\log _{x} 1024=5$
(b) $\log _{3}(7 y-3)=4$
(c) $\log _{a} 25+2 \log _{a} 625=10$
(d) $\log _{b} 7-2 \log _{7} b+1=0$

Question 6 continued

Question 6 continued

Question 6 continued

7 (a) Complete the table of values for $y=2^{x}-4$, giving your answers to 2 decimal places.

x	0	0.5	1	1.5	2	2.5	2.75	3
y	-3		-2		0		2.73	4

(b) On the grid opposite, draw the graph of $y=2^{x}-4$ for $0 \leqslant x \leqslant 3$
(c) Use your graph to obtain an estimate, to one decimal place, of the value of $\log _{2} 7$ Show clearly how you used the graph.
(d) By drawing a straight line on your graph, obtain an estimate to one decimal place of the root of the equation $2^{x}+3 x=7$ in the interval $0 \leqslant x \leqslant 3$

Question 7 continued

Turn over for a spare grid if you need to redraw your graph.

Question 7 continued

Question 7 continued
Only use this grid if you need to redraw your graph

(Total for Question 7 is 11 marks)

Figure 1
In Figure $1, \overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}$ and $\overrightarrow{O D}=\frac{2}{3} \mathbf{b}$
The point E divides $A D$ in the ratio $2: 3$
(a) Find as simplified expressions in terms of \mathbf{a} and \mathbf{b}
(i) $\overrightarrow{A D}$
(ii) $\overrightarrow{O E}$
(iii) $\overrightarrow{B E}$

The point F lies on $O A$ such that $\overrightarrow{O F}=\lambda \overrightarrow{O A}$ and F, E and B are collinear.
(b) Find the value of λ.

The area of triangle $O F B$ is 5 square units.
(c) Find the area of triangle $O A D$.

Give your answer in the form $\frac{p}{q}$, where p and q are integers.

Question 8 continued

Question 8 continued

Question 8 continued

$$
f(x)=3 x^{2}-5 x-4
$$

The roots of the equation $\mathrm{f}(x)=0$ are α and β
(a) Without solving the equation $\mathrm{f}(x)=0$, form an equation, with integer coefficients, which has
(i) roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$
(ii) roots $2 \alpha+\beta$ and $\alpha+2 \beta$
(b) Express $\mathrm{f}(x)$ in the form $A(x+B)^{2}+C$, stating the values of the constants A, B and C.
(c) Hence, or otherwise, show that the equation $\mathrm{f}(x)=-8$ has no real roots.

Question 9 continued

Question 9 continued

Question 9 continued

10 The points A and B have coordinates $(2,4)$ and $(5,-2)$ respectively. The point C divides $A B$ in the ratio 1:2
(a) Find the coordinates of C.

The point D has coordinates $(1,1)$
(b) Show that $D C$ is perpendicular to $A B$.
(c) Find the equation of $D C$ in the form $p y=x+q$

The point E is such that $D C E$ is a straight line and $D C=C E$.
(d) Find the coordinates of E.
(e) Calculate the area of quadrilateral $A D B E$.

Question 10 continued

Question 10 continued

