edexcel \#\#

Mark Scheme (Results)
January 2016

International GCSE Further Pure Mathematics 4PM0/02

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask the Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2016
Publications Code UG043229
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
o M marks: method marks
o A marks: accuracy marks
o B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
o cao - correct answer only
o ft - follow through
o isw - ignore subsequent working
o SC - special case
o oe - or equivalent (and appropriate)
o dep-dependent
o indep - independent
o eeoo - each error or omission

- No working

If no working is shown then correct answers may score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

Always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses 2A (or B) marks on that part, but can gain the M marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

- I gnoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part ofthe question CANNOT be awarded in another.

General Principles for Further Pure Mathematics Marking (but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q) \text { where }|p q|=|c| \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q) \text { where }|p q|=|c| \text { and }|m n|=|a|
\end{aligned}
$$

2. Formula:

Attempt to use the correct formula (shown explicitly or implied by working) with values for a, b and c, leading to
3. Completing the square:

Solving $x^{2}+b x+c=\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c$ where $q \neq 0$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1.
2. Integration:

Power of at least one term increased by 1.

Use of a formula:

Generally, the method mark is gained by:
either quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values
or, where the formula is not quoted, the method mark can be gained by implicationfrom the substitution of correct values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers may be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show....

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

Jan 2016

4PM0 Further Pure Mathematics Paper 2

Mark Scheme

Question Number	Scheme ${ }^{\text {a }}$ Marks
1.	$2^{2(x-2)}=2^{3(3 x-1)}$ M1 $\Rightarrow 2(x-2)=3(3 x-1)$ dM1A1 $x=-\frac{1}{7}$ A1cao (4)
$\begin{gathered} \text { M1 } \\ \text { dM1 } \\ \text { A1 } \\ \text { A1cao } \end{gathered}$	Attempt to change to powers of 2, 4 or 8 (both sides of equation) Equate powers Correct linear equation - unsimplified $x=-\frac{1}{7} \text { (or equivalent fraction with integer numerator and denominator) }$ NB: $\log _{4} 8=1.5$ is exact and so allowed
ALT 1	Alternatives for no 1 Take logs base 4 each side Change $\log _{4} 8$ to 1.5 Correct linear equation 1.5 and any other non-rounded decimals allowed A1 Correct solution $x=-\frac{1}{7}$ decimals may have been used in working, provided none have been rounded
ALT 2	$\log 4^{(x-2)}=\log 8^{(3 x-1)} \quad$ can be any base $\begin{aligned} & (x-2) \log 4=(3 x-1) \log 8 \\ & (x-2) \times 2 \log 2=(3 x-1) \times 3 \log 2 \\ & 2(x-2)=3(3 x-1) \\ & x=-\frac{1}{7} \end{aligned}$

Question Number	Scheme Marks
$\begin{gathered} \text { (1) } \\ \text { Alt } 3 \end{gathered}$	$\begin{aligned} & \frac{4^{x}}{4^{2}}=\frac{8^{3 x}}{8} \Rightarrow \frac{4^{x}}{2}=8^{3 x} \\ & 4^{x} \times \frac{1}{2}=\left(8^{3}\right)^{x} \quad \frac{1}{2}=\left(\frac{8^{3}}{4}\right)^{x} \\ & \frac{1}{2}=128^{x} \\ & x=\frac{\log \frac{1}{2}}{\log 128}=\frac{-\log 2}{7 \log 2} \quad \text { (any base) } \quad \text { dM1 } 1 \mathrm{~A} 1 \\ & x=-\frac{1}{7} \end{aligned}$
2.	(i) $48=\frac{1}{2} \theta r^{2}, 8=\theta r$ or equivalent equations $\frac{\frac{\theta r^{2}}{2}}{\theta r}=\frac{48}{8} \Rightarrow r=12$ (ii) $\quad \theta=\frac{8}{12},\left(=\frac{2}{3}\right)$
$\begin{gathered} \hline \text { B1 B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	B1B1 Two correct equations; B1B0 One correct equation Eliminate either variable and solve to obtain the other $r=12$ $\theta=\frac{8}{12}$ oe Accept 0.667 or better (NB: decimal may be ignored under isw rule.)

Question Number	Scheme ${ }^{\text {a }}$ Marks
5 (a) (b) (c)	$\begin{align*} & \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta \Rightarrow \alpha \beta=\frac{5^{2}-19}{2}=3 \text { cso *** } \tag{2}\\ & \Rightarrow \frac{c}{a}=3 \text { and }-\frac{b}{a}=5 \text { let } a=1 \Rightarrow x^{2}-5 x+3=0 \text { oe } \\ & \frac{\beta}{\alpha}+\frac{\alpha}{\beta}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta},=\frac{19}{3} \\ & \frac{\beta}{\alpha} \times \frac{\alpha}{\beta}=1 \\ & x^{2}-\frac{19}{3} x+1(=0), \quad 3 x^{2}-19 x+3=0 \text { oe } \end{align*}$
(a)M1 A1cso ALT: (b)M1 A1 (c)M1 A1 B1 M1 A1ft	Obtain an expression for $\alpha \beta$ in terms of $\alpha+\beta$ and $\alpha^{2}+\beta^{2}$ Correct value for $\alpha \beta$ Solve the given equations for α and β M1 Fully correct to given answer A1 Use $x^{2}-($ sum of roots $) x+$ product of roots $(=0)$ A correct equation - any integer multiple of the one shown Write the sum of the roots as a single fraction. Algebra to be correct for this mark. Correct value for the sum of the roots Product $=1$ Seen explicitly or used Use $x^{2}-$ (sum of roots) $x+$ product of roots $(=0)$ Correct equation. Follow through their sum and product. Any integer multiple accepted.
$6 \text { (a) }$ (b) (c)	$\begin{array}{l\|l} \begin{array}{l} \sin (2 x)=\sin x \cos x+\cos x \sin x=2 \sin x \cos x * \\ \cos (2 x)=\cos x \cos x-\sin x \sin x=\cos ^{2} x-\sin ^{2} x * \end{array} & \begin{array}{l} \text { B1 } \\ \text { B1 } \\ \frac{x}{2 x}=\frac{2 \sin x \cos x}{1+\left(\cos ^{2} x-\sin ^{2} x\right)} \\ \frac{2 \sin x \cos x}{x+\sin ^{2} x+\cos ^{2} x-\sin ^{2} x} \end{array} \\ \frac{x \cos x}{\operatorname{os}^{2} x}=\tan x^{* * *} & \text { M1 } \\ \hline \end{array}$
(a)B1 (b)B1 (c)M1 dM1 A1 A1cso	For the correct result. Award only if evidence of use of the given formula is seen As for (a) Use the above identities to change " $2 x$ "s to " x "s Use $\cos ^{2} x+\sin ^{2} x=1$ to eliminate $\sin ^{2} x$ Min evidence is $\left(1-\sin ^{2} x\right)$ changed to $\cos ^{2} x$ or $\left(1-\sin ^{2} x\right)+\cos ^{2} x=2 \cos ^{2} x$ Denominator $1+\mathrm{c}^{2}-\mathrm{s}^{2}$ changed to either $\mathrm{c}^{2}+\mathrm{c}^{2}$ or $2 \mathrm{c}^{2}$ is NOT sufficient But $1-s^{2}+c^{2}$ changed to $c^{2}+c^{2}$ or $2 c^{2}$ is sufficient Correct (unsimplified) fraction, as shown or equivalent (no trig functions of $2 x$) Both M marks must be gained for this A mark to be awarded Obtain the GIVEN result with no errors seen

Question Number	Scheme	Marks
7 (a)	$x=\frac{3}{2} \quad\left(\text { or eg } 2 x=3, x-\frac{3}{2}=0\right)$	B1 (1)
(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(2 x-3)(2 x)-\left(x^{2}-2\right)(2)}{(2 x-3)^{2}}=\left(\frac{2 x^{2}-6 x+4}{(2 x-3)^{2}}\right)$	M1A1A1 (3)
(c)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow \frac{(2 x-3)(2 x)-\left(x^{2}-2\right)(2)}{(2 x-3)^{2}}=0$	M1
	$\Rightarrow 2 x^{2}-6 x+4=0 \Rightarrow(x-1)(x-2)=0 \Rightarrow x=1, x=2$	M1A1A1
	$x=1, y=1 \quad(1,1) \quad x=2, y=2 \quad(2,2)$	$\begin{array}{ll} \mathrm{A} 1 & (5) \\ & (9) \\ \hline \end{array}$
(a) B1		
	For a correct equation for the asymptote. NB $x \neq \frac{3}{2}$ scores B0	
(b)		
M1	Attempt to differentiate by quotient rule. Denominator must be correct. Numerator must be the difference of two terms of the appropriate form.	
A1	NB M1 on e-PEN First term correct	
A1	Second term correct	
ALT:	Use the product rule. M1 for the attempt, using ($\left.x^{2}-2\right)(2 x-3)^{-1}$	
	A1,A1 one for each correct term	
(c)		
M1	Equate their derivative to 0	
M1	Solve their quadratic (numerator) by any valid method.	
A1 A1	A1A1 two correct values for x from a correct equation; A1A0 for one correct value Ignore extra values.	
A1	NB B1 on e-PEN Find the corresponding y values. Coordinate brackets need not be shown. Give A0 if more than 2 stationary points shown.	
	NB: Quadratic solved on a calculator: correct values for x, M1A1A1 One or both values incorrect, or only one value shown: M0A0A0	
	Special Case for (c): Both correct answers only shown, Award B1B1 - in first two marks on e-PEN.	

Question Number	Scheme ${ }^{\text {a }}$ Marks
8 (a)	$a=2-3=-1 d=2 \quad(l=2 n-3)$ Uses $S_{n}=\frac{n}{2}(a+l), \quad S_{n}=\frac{n}{2}(-1+(2 n-3)) \quad S_{n}=\frac{n}{2}(n-2) * * *$ OR $\begin{aligned} & S_{n}=\frac{n}{2}(2 \times-1+(n-1) 2) \Rightarrow S_{n}=\frac{n}{2}(2 n-4) \Rightarrow S_{n}=n(n-2)^{* * *} \\ & 5(2 n+4-3)=3(n-3)((n-3)-2) \\ & 3 n^{2}-34 n+40=03 \mathrm{TQ} \Rightarrow(3 n-4)(n-10)=0 \Rightarrow n=10 \end{aligned}$ M1A1cso (4) M1A1 M1 dM1A1
(a) B1 B1	$a=-1$ No working needed - need not be shown explicitly $d=2$ No working needed or if $S_{n}=\frac{n}{2}(a+l)$ used, give B1 for correct substitution if no value shown anywhere for d
M1	Using either formula for S_{n} with their a and d
A1cso (b)	Obtaining the GIVEN result with no errors seen
$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { dM1 } \end{gathered}$	Using the GIVEN t_{n} and S_{n} in the equation or start from correct basic formulae Correct unsimplified equation Obtaining a three term quadratic, terms in any order NB A1 on e-pen Factorising their quadratic or correct use of formula/completing the square.
A1	Cao $n=10$ Award A0 if single correct answer not identified. If final answers shown without working (implying calculator solution) give M1 only if both correct answers to the quadratic are shown. A1 then for identifying the single correct solution for this problem.

Question Number				Sche				Marks
11(a)	$\begin{gathered} x \\ \mathrm{f}(x) \end{gathered}$	$\begin{aligned} & \hline-2 \\ & \hline 2.05 \end{aligned}$	$\begin{gathered} \hline-1 \\ \hline 2.14 \end{gathered}$	$\begin{gathered} \hline 0 \\ \hline 2.37 \end{gathered}$	3	$\begin{gathered} \hline 2 \\ \hline 4.72 \end{gathered}$	9.39	$\begin{aligned} & \text { B1B1 } \\ & \text { (2) } \end{aligned}$
(b) (c)	Correct $4=\mathrm{e}^{(x-1)}$ Line y	ts plote $6=\mathrm{e}^{(x-1)}$ drawn	d and $+2 \quad y$ $x=2.4$	ch dra				B1ftB1ft (2) M1 A1 (2)
(d)	$\begin{aligned} & \ln (4 x- \\ & \Rightarrow 4 x- \\ & y=4 x \end{aligned}$ accept	$\begin{aligned} & =x-1= \\ & e^{(x-1)}+ \\ & \text { drawn } \\ & .3 / 1.4 \end{aligned}$	$(4 x-4)$ graph	$\mathrm{e}^{(x-1)}$,				M1,A1 A1ft dM1 A1cso(5) (11)
(a)	NB Read rounding rules at start of this document							
B1B1	B1B1 three correct values; B1B0 two correct values							
(b)								
B1ft	Plot their points correctly							
B1ft	Draw a smooth curve through their points. $-2 \leqslant x \leqslant 3$ only needed - ignore any points/graph outside this range.							
(c)								
M1	Attempt to deduce the value of y corresponding to the given equation, $y=4 \pm 2$ should be seen							
A1	If the M mark is gained and $y=6$ or $\mathrm{e}^{(x-1)}+2=6$ is seen this mark can be given without the line being drawn. If the line $y=6$ is seen on the graph and correct answer given, award M1A1							
(d)								
M1	Change equation from log to exponential form							
A1	Correct exponential equation							
A1ft	Add 2 to each side of their equation							
dM1	Draw their line on their graph							
A1cso	Obtain $x=1.3$ or 1.4 Must be 1 dp unless already penalised (1.355...) Correct answers from incorrect lines score A0. Ignore extra answers outside the given range.							

