MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

0445 DESIGN AND TECHNOLOGY

0445/04

Paper 4 (Technology), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – October/November 2009	0445	04
				Section A		
1	(a)	A B	Fran Shel	nework II		[1] [1]
	(b)	(i)	Goo mate	d strength to weight ratio (1) and combines the struerials (1)	ctural properties	s of both [2]
		(ii)	Plyw	/ood / internal doors / aircraft wing / display-board		[1]
2						
		_		effort (1)		
	fulc	L. rum	Ζ	load		

(1)

3 Complete the table showing a selection of electrical switches.

(1)

on by
g the of
NT
)
S

[3]

© UCLES 2009

www.xtremepapers.net

[4]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2009	0445	04

4 (a)

[2]

	(b) Burglar alarm / movement detection / light level alarm	[1]			
5	 (a) Speed of the driven gear = speed of driver × gear ratio (R) R = Teeth on driver / Teeth on driven = 18 / 12 (1) R = 3 / 2 (1) Speed = 200 × 3 / 2 = 300 rpm (1) 	[3]			
	(b) Add an idler gear (1) between the driver and driven gears (1)	[2]			
6	OR	[1]			
7	Cantilever	[1]			
8	First				
9	Drilling machine / lathe	[1]			
10	0 Reduce friction / reduce wear and tear / energy efficiency				

© UCLES 2009

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2009	0445	04

Section B

11 (a) Washing machine programme controller / alarms

(b) (i) (2) (1) (1) (1)

(ii) Sketch the circuit symbol for a **NAND** gate.

(iii) Complete the truth table below for a NAND gate.

Input A	Input B	Output	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

[3]

© UCLES 2009

www.xtremepapers.net

[1]

[4]

[3]

Page 5	5 Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2009	0445	04
(b) (i) Short leg	Flat edge (-ve connection) (1) g negative (1)	7 (1)	
	Sketch quality	7 (1)	
			[3]
(ii)	Protective resistor (1) that reduces current flow through	LED (1)	[2]
(iii)	V = IR I = V / R (1)		
	I = 9 / 470 (1) I = 9 / 470 (1)		[0]
	I = 0.019 A (1)		[3]
(iv)	 Last longer / more robust Smaller / range of colours 		[1] [1]
(v)	Parallel		[1]
			F / -
(c) 1st 2nc	: Yellow d: Violet		[1] [1]
3rd	l: Brown		[1]

© UCLES 2009

Page 6		ge 6	Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – October/November 2009	0445	04
12	(a)	Head: Ro Legs: Os	eciprocating scillating		[1] [1]
	(b)	Quality o	of response (1)		
			Slot in head piece (1)		
		ΕD	(ed point (1) Pivot jointing head	piece to legs (1)	
		•••	Pivot through legs into main	P	
			body (1)		[5]
					[0]
	(c)	(i) Ann Qua	otations (1) lity of response (1)		
		-	Slot and peg Part (c)(ii) Bell crank levers (2)	limits travel (2)	[4]
		(11) Coo	Figure chouc		[.]
		(II) See	Figure above		[2]
		(iii)			
			Card backing board. (1)		
		Card	pieces (1)		
					[3]
		(iv) Sav	es materials (1); simulates movement exactly (1)		[2]

Г

© UCLES 2009

Page 7		Mark Scheme: Teachers' version	Syllabus	Paper
		IGCSE – October/November 2009	0445	04
(d) (i)	Guita	ar tuner		[1]
(ii)	Enat char	bles precise, small incremental movements (1) and en age axis of rotation (1)	ables great spe	/ ed reductions: [2]
(iii)	Ratio	o = 1: 40		[1]
(iv)	If the Outp Outp Outp	e speed of the worm is 200 rpm calculate the output sp out speed = Input speed × 1 / 40 out speed = 200 / 40 (1) out speed = 5 rpm (1)	eed from the wo	ormwheel. [2]

13 (a) (i)

[3]

[3]

(b) Reactions at L and R. R + L = 30 N $R \times 1.2 = (0.25 \times 10) + (0.55 \times 15) + (0.95 \times 5) (1)$ $R = \frac{2.5 + 8.25 + 4.75}{1.25} (1)$ R = 12.92 N (1)L = 30N - 12.92 N = 17.08 N (1)

[4]

© UCLES 2009

[3]

[2]

- (ii) Tension / Tensile [1]
- (iii) All internal forces (1) are balanced by all external forces (1)
- (iv)

(ii) Good strength to weight ratio (1) and a low cost material (1) that can be recycled (1) [3]

© UCLES 2009