Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CO-ORDINATED SCIENCES

0654/33
Paper 3 (Extended)
May/June 2014
2 hours
Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
A copy of the Periodic Table is printed on page 32.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

1 (a) Wind farms are areas of land containing many wind turbines. Four thousand wind turbines can produce the same power as one coal-fired power station.

(i) State one advantage and one disadvantage of using wind, rather than coal, to generate electrical power.
advantage
\qquad
disadvantage
\qquad
(ii) On a particular day, the power input to a wind turbine is 1500 kW . The turbine produces 900 kW of electrical power.

Calculate the efficiency of the wind turbine.
State any formula that you use and show your working. State your answer as a percentage.
formula
working
(b) Nuclear power stations generate electricity using energy released by the nuclear fission of atoms.
(i) Describe the process that transforms this energy into electrical energy.
\qquad
\qquad
\qquad
\qquad
(ii) Energy is released in the Sun by a different nuclear process.

Name this process.
(c) A wind farm generates 33 MW of electrical power. The wind farm is connected to a transmission line at a potential difference of 132 kV .

Calculate the current produced by the wind farm.
State the formula that you use and show your working.
formula
working
(d) Fig. 1.1 shows how the electricity cables carrying electricity from a wind farm are attached to pylons.

The cables hang loosely in hot weather.

Fig. 1.1
Explain why the cables must hang loosely in hot weather.
\qquad
\qquad
(e) A scientist investigates six different wires used in making these cables. He wants to determine the resistance of each piece of wire.

wire	metal composition	length/m	cross-sectional area/cm ${ }^{2}$
A	copper	10	0.1
B	nichrome	10	0.1
C	copper	20	0.1
D	nichrome	20	0.1
E	copper	10	0.2
F	nichrome	20	0.2

(i) Which wire, \mathbf{A} or \mathbf{E}, will have the greater resistance?

Explain your answer.
wire \qquad because \qquad
\qquad
(ii) Wire \mathbf{B} has a greater resistance than wire \mathbf{A}.

Which wire, B, C, D, E or F, has the greatest resistance?
Explain your answer.
wire \qquad
explanation
(iii) The resistance of wire \mathbf{B} is 0.15Ω.

Calculate the current passing through the wire when a voltage of 12 V is applied across it. State the formula that you use and show your working.
formula
working

2 (a) Fig. 2.1 shows some of the cells that line the trachea.

Fig. 2.1
(i) Name the structures labelled \mathbf{X}.
\qquad
(ii) Explain how these structures, and the cells labelled \mathbf{Y}, protect the gas exchange system from pathogens.
\qquad
\qquad
\qquad
\qquad
(b) Tobacco smoke can have a damaging effect on the working of the cells in Fig. 2.1.
(i) Name a component of tobacco smoke that damages these cells.
\qquad
(ii) Describe how this component of tobacco smoke affects the structures labelled \mathbf{X} and the cells labelled \mathbf{Y}.
structures labelled \mathbf{X}
\qquad
\qquad
cells labelled \mathbf{Y}
\qquad
\qquad

Please turn over for Question 3.

3 (a) Dutch metal is an alloy of copper and zinc that has been formed into very thin sheets.
When a small piece of Dutch metal is dropped into a container filled with chlorine, it bursts into flame and two compounds are produced as shown in Fig. 3.1.

Fig. 3.1
(i) State the meaning of the term alloy.
\qquad
\qquad
(ii) State the physical property of metals that allows them to be formed into very thin sheets.
\qquad
(iii) Suggest the names of the two compounds formed when Dutch metal reacts with chlorine.

1 \qquad
2
(b) Sodium burns in oxygen gas to produce a white solid that contains the ionic compound, sodium oxide.

Fig. 3.2 shows a sodium atom and an oxygen atom.

Fig. 3.2
Predict and explain, in terms of changes in electronic structure, the chemical formula of sodium oxide. You may wish to draw diagrams to help you to answer this question.
\qquad
(c) Phosphorus is a non-metallic element containing molecules that have the formula P_{4}.

The chemical formula of phosphorus oxide shows four phosphorus atoms bonded with ten oxygen atoms.

Construct a balanced symbolic equation for the reaction between phosphorus and oxygen gas to form phosphorus oxide.

4 Fig. 4.1 shows a river with nearby agricultural land. Large amounts of artificial fertiliser have been sprayed onto the agricultural land.

Fig. 4.1
(a) Name a mineral ion that would be present in the fertiliser.
\qquad
(b) Describe how mineral ions in the fertiliser might reach the river.
\qquad
\qquad
(c) When large amounts of mineral ions are added to a river a sequence of effects on the living organisms can take place.

Explain the effects on the following organisms
(i) algae (photosynthesising microorganisms),
\qquad
\qquad
(ii) submerged aquatic plants,
\qquad
\qquad
\qquad
(iii) bacteria,
\qquad
\qquad
\qquad
(iv) fish.
\qquad
\qquad
(d) If the farmer uses artificial fertiliser, suggest two ways in which the effect of the fertiliser on the river could be reduced.

1 \qquad
\qquad
2 \qquad

5 (a) Two bar magnets \mathbf{A} and \mathbf{B} are shown in Fig. 5.1. Magnet \mathbf{A} is moved towards magnet \mathbf{B}.

Fig. 5.1
(i) Describe and explain what happens to magnet \mathbf{B} as magnet \mathbf{A} is moved towards it.
\qquad
\qquad
(ii) Magnet \mathbf{A} is replaced by a piece of unmagnetised iron \mathbf{C}.

Predict what happens as the unmagnetised iron \mathbf{C} is moved towards \mathbf{B}.
Explain your prediction.
\qquad
\qquad
\qquad
(b) Fig. 5.2 shows two plastic balls hanging from threads. Both balls are electrically charged.

Fig. 5.2
Ball \mathbf{Y} is negatively charged.
(i) State the charge on ball \mathbf{X}. Give a reason for your answer.
\qquad
\qquad
(ii) Describe and explain how ball \mathbf{Y} has been given a negative charge.
\qquad
\qquad
(iii) There is an electric field between ball \mathbf{X} and ball \mathbf{Y}.

State what happens to an electrical charge placed in this field.
\qquad
\qquad
(c) The mass of ball \mathbf{X} is $3.97 \mathrm{~g}\left(3.97 \times 10^{-3} \mathrm{~kg}\right)$. The volume of ball \mathbf{X} is $4.17 \mathrm{~cm}^{3}\left(4.17 \times 10^{-6} \mathrm{~m}^{3}\right)$. Calculate the density of the plastic used to make ball \mathbf{X}.

State the formula that you use and show your working. State the units of your answer. formula working
\qquad unit $=$

Please turn over for Question 6.

6 (a) Fig. 6.1 shows diagrams \mathbf{P}, \mathbf{Q} and \mathbf{R}, of three molecules containing carbon atoms.

Fig. 6.1
(i) Using the Periodic Table on page 32, state the number of electrons in one atom of carbon.

Explain how you obtained your answer.
number of electrons
explanation \qquad
\qquad
(ii) State and explain which diagram, \mathbf{P}, \mathbf{Q} or \mathbf{R}, represents one molecule of ethane. diagram
explanation \qquad
\qquad
\qquad
(iii) Name the type of chemical bonding found in all of the compounds shown in Fig. 6.1.

Give a reason for your answer.
type of bonding \qquad
reason \qquad
\qquad
(b) Methane hydrate is a solid mixture in which methane molecules are contained inside ice crystals.

Large amounts of methane hydrate exist under the oceans and in the cold polar regions of the Earth.

Table 6.1 shows the relative numbers of moles of methane and water in a typical sample of methane hydrate.

Table 6.1

substance	chemical formula	relative number of moles
methane	CH_{4}	1.00
water (ice)	$\mathrm{H}_{2} \mathrm{O}$	5.75

(i) The mass of 1.00 moles of methane is 16.0 g .

Calculate the mass of 5.75 moles of water.
Show your working.
(ii) Calculate the mass of methane hydrate that contains 1.00 moles of methane.
(iii) When the temperature of methane hydrate increases, the ice melts and releases the methane.

Some scientists think that methane hydrate might have a serious effect on global warming.

Suggest how the breakdown of methane hydrate might affect global warming.
\qquad
\qquad
\qquad
\qquad

7 An electric motor inflates a car tyre by pumping air into it.
(a) Explain, in terms of particles, how the air causes the tyre to inflate.
\qquad
\qquad
\qquad
\qquad
(b) Fig. 7.1 shows a simple electric motor.

Fig. 7.1
Explain why the coil turns when an electric current passes through it.
\qquad
\qquad
\qquad
\qquad
\qquad

Please turn over for Question 8.

8 After its flowers have been pollinated, a sweetcorn (maize) plant produces a corncob as shown in Fig. 8.1.

Fig. 8.1
Each of the individual grains on the corncob results from the fertilisation of a different egg cell in the female parent. The pollen all came from the same (male) parent.

Some of the grains are purple (dark) in colour and others yellow (light) in colour.
(a) The variation in grain colour is an example of discontinuous variation.

Explain why this variation is described as discontinuous.
\qquad
\qquad
\qquad
(b) (i) In the row of grains labelled \mathbf{X} to \mathbf{Y}, count the number of purple (dark) grains and the number of yellow (light) grains.
number of purple (dark) grains
number of yellow (light) grains
(ii) State, to the nearest whole number, the ratio of purple grains to yellow grains.
\qquad
(c) The allele for purple colour (\mathbf{G}) is dominant and the allele for yellow colour (\mathbf{g}) is recessive.
(i) What would be the colour of a sweetcorn grain with the genotype $\mathbf{G g}$?
\qquad
(ii) Use the ratio of purple grains and yellow grains in (b)(ii) to state the genotypes of the parents.
genotypes
and
(d) Complete the genetic diagram below to show the result of crossing a heterozygous sweetcorn plant with a yellow-grained sweetcorn plant.

parents

genotype
gametes

offspring
genotype
grain colour
ratio

9 (a) Fig. 9.1 shows air passing into the engine of a car, and a mixture of exhaust (waste) gases being released.
composition of air taken into the car's engine

Fig. 9.1
(i) Complete the table in Fig. 9.1 to show the name and percentage of the main gas in air.
(ii) Name one gas, other than carbon dioxide, in the mixture of exhaust gases which causes air pollution.

State one harmful effect that this gas has in the environment.
gas \qquad
harmful effect \qquad
\qquad
(b) Hydrogen gas is released when magnesium reacts with dilute hydrochloric acid.

(i) Describe the test for hydrogen gas.
\qquad
\qquad
(ii) State the word equation for the reaction between magnesium and dilute hydrochloric acid.
\qquad
(c) Fig. 9.2 shows the apparatus a student used to measure the temperature change when magnesium powder reacted with dilute hydrochloric acid.

Fig. 9.2
The student repeated the experiment using different masses of magnesium powder.
After each experiment he rinsed out the insulated beaker and then refilled it using the same volume of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid. His results are shown in Fig. 9.3.

Fig. 9.3
(i) Explain, in terms of energy, why the temperature of the reaction mixture increases when magnesium powder is added to dilute hydrochloric acid.
\qquad
\qquad
\qquad
\qquad
(ii) Suggest why in this experiment the graph eventually became horizontal.
\qquad
\qquad
\qquad

Please turn over for Question 10.

10 (a) Draw lines to link the waves in the electromagnetic spectrum to their uses. One line has been drawn for you.
electromagnetic wave use

(b) Different waves in the electromagnetic spectrum have different wavelengths and frequencies.

State the meaning of the terms frequency and wavelength.
You may use diagrams to help your explanation.
frequency
\qquad
\qquad
\qquad
wavelength
\qquad
\qquad
\qquad
(c) α-radiation, β-radiation and γ-radiation are three radioactive emissions.
(i) Place the three radiations in order of their ionising ability, placing the most ionising first. most ionising \qquad

(ii) Fig. 10.1 shows α, β, and γ radiations passing through a magnetic field.

Fig. 10.1
Explain the results.
\qquad
\qquad
\qquad
\qquad
\qquad

11 (a) Define osmosis.
\qquad
\qquad
\qquad
\qquad
(b) A piece of plant tissue was placed in a concentrated sugar solution on a microscope slide. Fig. 11.1 shows the appearance of three of the cells from this tissue after they had been in the sugar solution for one hour.

Fig. 11.1
(i) Describe the effect, as shown in Fig. 11.1, that the sugar solution has had on the cells.
\qquad
\qquad
(ii) Explain this effect in terms of osmosis.
\qquad
\qquad
\qquad
(iii) Complete Fig. 11.2, to show how the cells would appear if they had been placed in water, instead of in a concentrated sugar solution.

Fig. 11.2
(c) Plants absorb water by osmosis into their root hair cells.
(i) Explain how the structure of the root hair cells is related to this function.
\qquad
\qquad
\qquad
(ii) State one other function of root hair cells.

12 (a) Fig. 12.1 shows some of the particles present in a mixture of gases.

Fig. 12.1
(i) State the number of different gases that are contained in the mixture shown in Fig. 12.1.
(ii) On Fig. 12.1 draw a label line to a molecule of a compound. Label this molecule \mathbf{C}.
(iii) Explain your answer to (ii).
\qquad
\qquad
(b) Name the family of metals that includes cobalt (proton number 27) and nickel (proton number 28).
(c) Fig. 12.2 shows a simplified diagram of the industrial process used to produce aluminium.

Fig. 12.2
(i) Name the two substances that are melted together to form the electrolyte.

1

2
(ii) Name one gas that bubbles from the surface of the anode.
(iii) Describe what happens on the surface of the cathode to convert aluminium ions, $\mathrm{Al}{ }^{3+}$, to aluminium atoms.
\qquad
\qquad
\qquad
DATA SHEET
The Periodic Table of the Elements

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.). publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

