

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

* 8 8 2 0 5 7 0 9 7

CO-ORDINATED SCIENCES

0654/21

Paper 2 (Core)

May/June 2011

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

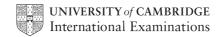
Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.


A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	For Examiner's Use				
1					
2					
3					
4					
5					
6					
7					
8					
9					
Total					

This document consists of 24 printed pages.

1 A student carried out an experiment to find which substances in the environment caused nails made of mild steel to become rusty.

For Examiner's Use

She selected three identical nails and placed them in sealed test-tubes, $\bf A$, $\bf B$ and $\bf C$, as shown in Fig. 1.1.

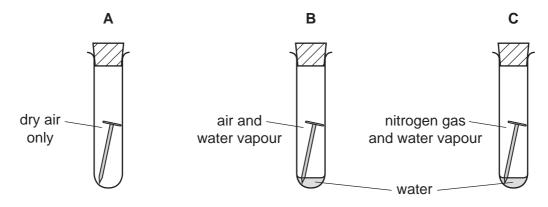
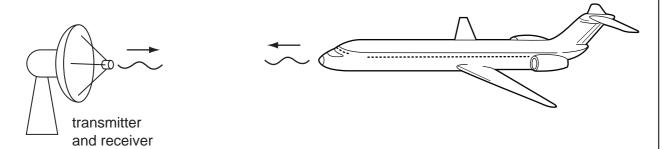


Fig. 1.1

The student observed that only the nail in test-tube **B** became rusty.

(a)	Milo	d steel is an alloy.	
	Des	scribe briefly how the composition of mild steel is different from iron.	
			[1]
(b)	(i)	Explain why the nail in test-tube B in Fig. 1.1 rusted but the nails in the other t tubes did not.	:WO
			••••
			[3]
			[၁]
	(ii)	Name the type of chemical reaction which occurs when mild steel rusts.	
			[1]

(iii)	Objects made mainly of iron have been recovered from sunken ships which have lain on the sea-bed for many years.
	Suggest why such objects have not rusted away.
	[1]
	cycle chains that are made of steel are usually kept covered in oil made of drocarbon molecules, which help to prevent rusting.
	steel chain
(i)	Explain which of the chemical formulae, ${\bf V}$ to ${\bf Z}$, shown below, represent hydrocarbons.
	v H ₂ OC
	\mathbf{w} C_2H_2
	$X C_6H_{12}O_6$
	$Y C_{10}H_{22}$
	z HCN
	chemical formulae
	explanation
	[2]
(ii)	Suggest one property of a hydrocarbon oil which makes it suitable for use as a barrier to prevent rusting.
	[1]


(d)	Most bicycle tyres are made of rubber which is a natural material made of polymer molecules.	For Examiner's Use
	Describe briefly how a polymer molecule differs from a simple molecule. You may draw a diagram to help you to answer this question.	
	[1]	

2 (a) Fig. 2.1 shows how radar is used to detect aircraft.

For Examiner's Use

Radar uses microwaves with a frequency of about 10 000 MHz. Short microwave pulses are sent from the transmitter, reflected from the aircraft and received. The time it takes for the wave pulse to make the journey there and back is measured.

Microwave pulses travel at 300 000 000 m/s.

		Fig. 2.1
a)	(i)	Explain the meaning of the term frequency.
		[1]
	(ii)	A radar transmitter sends a microwave pulse which is reflected from the aircraft. The microwave pulse returns to the receiver 0.000027s after transmission.
		Calculate the distance of the aircraft from the radar transmitter.
		State the formula that you use and show your working.
		formula used
		working
		m [3]

6 **(b)** The mass of the aircraft is 140 000 kg. Calculate the kinetic energy of the aircraft as it travels at 100 m/s. State the formula that you use and show your working. formula used working [2] (c) Fig. 2.2 shows four forces acting on the aircraft as it flies at a constant speed and altitude.

For Examiner's Use

Fig. 2.2

(i) Name forces C and D.

(ii) Explain how you know that forces **B** and **D** must be equal and opposite.

[1]

(d)	As the aircraft lands, it is travelling at 85 m/s. It moves along the runway and decelerate at a uniform rate for 40 s until it stops.	es
	Calculate the deceleration of the aircraft along the runway.	
	State the formula that you use and show your working.	
	formula used	
	working	
	mm/s²	[2]

The smell of food cooking is detected by special cells in a person's nose. The salivary glands may respond to this stimulus by secreting saliva.

(a)	Name the receptor and the effector in this response.					
	rece	eptor				
	effe	ector		[2]		
(b)	Wh	en foc	od has been taken into a person's mouth, it is mixed with saliva.			
	Sali	iva co	ntains the enzyme amylase.			
	(i)	Wha	t is an <i>enzyme</i> ?			
				[2]		
	(ii)	Desc	cribe the function of amylase.			
				[2]		

(c) Fig. 3.1 shows a section through a molar tooth.

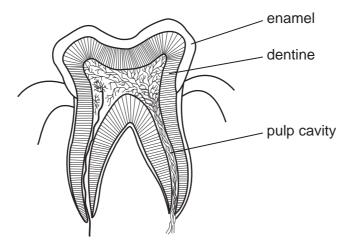


Fig. 3.1

(i)	Describe how the molar teeth help in the digestion of food.
	[2]
(ii)	If food is left on or between the teeth, they may start to decay.
	Describe how tooth decay happens.
	[3]
(iii)	Explain why a diet containing milk and other dairy foods can help to form strong teeth.
	[2]

4	The	older television sets there is a tube which contains three heated wires (filaments). e picture on the screen is produced when emissions from these wires are made to the screen.
	(i)	Name the particles emitted by these hot wires.
	(::)	Ctata the channel on these merticles
	(ii)	State the charge on these particles. [1]
	(iii)	The heated wire has an electrical resistance.
		State two factors which affect the resistance of a piece of wire.
		1
		2[2]
		e picture on the television screen is composed of many tiny dots of light. The dots of it consist of the three primary colours of light.
	(i)	Name these three colours.
		1
		2
		3[2]
	(ii)	Suggest why only three colours are needed.

[1]

(c) Fig. 4.1 shows the energy transferred each second by a television.

For Examiner's Use

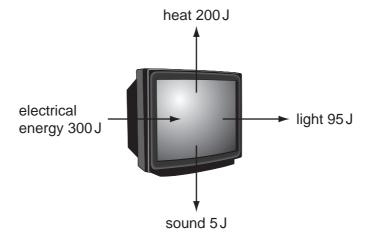


Fig. 4.1

(i)	Name the f	orm of	energy	that is	lost as	waste	energy	by the	e televisior	١.
-----	------------	--------	--------	---------	---------	-------	--------	--------	--------------	----

[1]

(ii) State the effect of the waste energy on the air around the television.

[1]

(iii) Calculate the energy efficiency of the television.

Show your working.

% [2]

5 The Earth provides raw materials which are processed into useful products.

For Examiner's Use

(a) Choose products from the list to complete the right hand column of Table 5.1. The first one has been done as an example.

aluminium ceramics chlorine glass paper steel

Table 5.1

raw material	useful product
iron ore	steel
clay	
rock salt	
sand and metal oxides	
wood	

[4]

(b) Air is a mixture of elements and compounds.

The gases nitrogen and oxygen can be separated from air which has been liquefied.

Nitrogen dioxide, NO₂, is a compound of nitrogen and oxygen.

State two differences	between a n	mixture of two	elements and	a compound	of the
same elements.					
	State two differences same elements.		_		State two differences between a mixture of two elements and a compound same elements.

1	
2	
	[2]

(ii) Nitrogen and oxygen can be separated from liquefied air because they have different boiling points.

Suggest the process which is used to separate these elements from liquefied air.

(c)	Nitrogen and hydrogen can be made to react together to form ammonia, NH ₃ .						
	At room temperature the rate of this reaction is extremely low and conditions mechasen to increase it.	ust be					
	Suggest two ways in which the reaction rate could be increased.						
	1						
	2	[2]					
(d)	Ammonia is used to make salts which are used as fertilisers.						
	State the type of substance which reacts with ammonia to make salts, and name the type of chemical reaction which occurs.						
	type of substance						
	type of reaction	[2]					

6 Fig. 6.1 shows a sperm cell.

For Examiner's Use

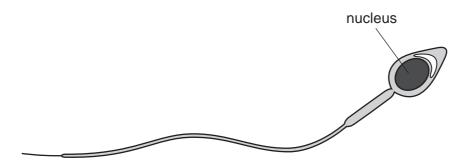


Fig. 6.1

(a) (i)	State the name and number of the structures contained in the nucleus of a specell.	∍rm
		[2]
(ii)	On Fig. 6.1, use label lines to label and name two structures, other than nucleus, that are found in all animal cells.	the [2]
(iii)	Describe two ways in which the shape of a sperm cell helps it to swim to an egg	J.
	1	
	2	
		[2]
(b) Na	ame the organ in which sperm are produced.	[1]

(c) An investigation was carried out into the oxygen use of sperm while they were at rest and while they were swimming. The researchers measured the oxygen use of a group of 10⁹ (one thousand million) sperm.

For Examiner's Use

The results are shown in Table 6.1.

Table 6.1

	oxygen use/units per 10 ⁹ sperm per hour
resting sperm	24
swimming sperm	83

(i)	Suggest why the researchers measured the oxygen use for 10 ⁹ sperm, rather than for a single sperm.
	[1]
(ii)	Explain why more oxygen is used when the sperm are swimming than when they are resting.
	[2]

7 (a) A house has a door bell which is operated by a switch at the door. The switch is closed when the bell push is operated.

For Examiner's Use

Fig. 7.1 shows the electrical circuit for this.

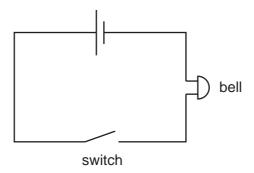


Fig. 7.1

On Fig. 7.1, add another switch and connecting wires to enable the bell to work from another door as well. [1]

(b) Fig. 7.2 shows a circuit for a two-way switch to operate a lamp.

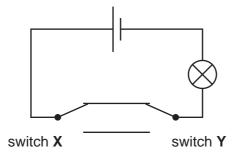


Fig. 7.2

Using the circuit diagram in Fig. 7.2, complete Table 7.1. State the position of the switch and whether the lamp is off or on.

Table 7.1

switch X	switch Y	lamp off or on
up	up up	
up	down	
down		off
	down	on

[2]

(c) Fig. 7.3 shows a hot water storage tank in the house. The water is heated by an electric immersion heater at the bottom of the tank.

For Examiner's Use

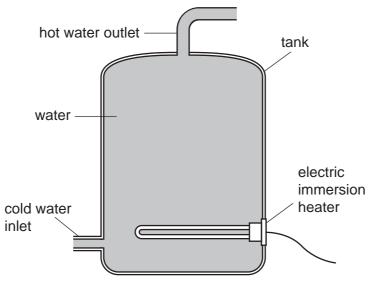


Fig. 7.3

(i) The heater is placed at the bottom of the tank and heats all the water.

Explain why only some of the water would be heated if the heater is placed at top of the tank.	the
	•••••

(ii) The heater has a power output of 5 kW. How many joules of energy does the heater deliver in one second?

J [1]
-----	----

(d) Fig. 7.4 shows a circuit breaker. It is designed to switch off the current in a circuit if the current becomes too large.

For Examiner's Use

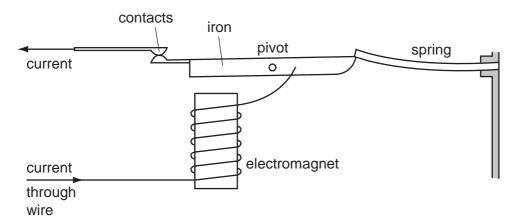


Fig. 7.4

Explain	how	the	circuit	breaker	switches	off	the	current	if	the	current	becomes	too
large.													

[3

(e) Fig. 7.5 shows a wind turbine outside the house, used to generate some of the electricity for the people in the house.

Fig. 7.5

There are advantages and disadvantages of using wind turbines to generate electricity rather than using fossil fuels.

(i)	Name one	example	of a	fossil	fuel.
יי	Name One	Champic	oi a	103311	iuci.

[1]

(ii)	Give one advantage of generating electricity from the wind.	
		[1]
(iii)	Give one disadvantage of generating electricity from the wind.	
		[1]

8 Dung beetles live in places where large herbivores, such as elephants, buffalo or cattle, also live.

For Examiner's Use

The beetles collect dung produced by the herbivores and make it into a ball, which they roll away and bury. They lay eggs on the buried ball of dung, so that when their larvae hatch they can feed on the dung. The adults also feed on the dung.

Fig. 8.1 shows a dung beetle rolling a ball of dung.

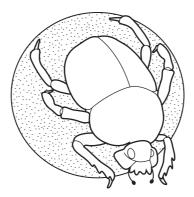


Fig. 8.1

(a) Dung beetles are important in the carbon cycle.

Use some of the words in the list to complete the sentences.

carbon dioxide	digestion	nitrog	en (oxygen	photosynthesis
respii	ration	roots	stomata	a water	
Dung beetles diges	t the dung, pr	oducing sug	gars that a	ıre absorbed i	nto their blood.
The sugars are take	en into the du	ng beetles'	cells, whe	re they are br	oken down during
	Thi	s releases			into the air.
Plants absorb this g	gas through th	neir			The gas is then
combined with water	er to make ca	rbohydrates	by		·
					[4]
Animal dung contai	ns nitrates.				
Explain how nitrates	s can help pla	ants to grow	better.		
					[2]

© UCLES 2011 0654/21/M/J/11

(b)

c) Farmers may use insecticides (pesticides that kill insects) on their land.					
	(i)	Explain why farmers use insecticides.	Examiner's Use		
		[2]			
	(ii)	Using the information above, explain why using insecticides on land where cattle graze could reduce the amount of nitrates in the soil.			
		[2]			

9

The chemical formulae for each of three compounds found in rocks are shown below. $CaMg(CO_3)_2$ dolomite KA1Si3O8 potassium feldspar SiO₂ quartz (a) (i) State the total number of atoms shown combined in the formula of potassium feldspar. [1] (ii) When a flame test is carried out on one of the compounds in the list, a lilac colour is produced. Suggest with a reason which one of the compounds is being tested. compound (iii) Two of the elements shown in the chemical formulae above are in Period 4 of the Periodic Table. State the **name** of **one** of these elements. [1] (b) Rocks on the Earth's surface are constantly being broken down into small pieces which may end up as part of the soil. (i) The Moon has no atmosphere. Suggest two reasons why rocks on the Moon do not break down in the same way as rocks on Earth. (ii) Explain briefly why the breakdown of rocks can improve the fertility of soil.

For

Examiner's Use

(c) Limestone is mainly calcium carbonate, CaCO₃. When limestone is heated strongly for some time using a Bunsen flame, a chemical reaction occurs. The word equation for this reaction is calcium carbonate — calcium oxide + carbon dioxide (i) State the type of chemical reaction which occurs. Explain your answer. type of reaction explanation [2] (ii) Predict whether the mass of calcium oxide which is produced in the reaction in (i) is greater than, or less than, or the same as the mass of the calcium carbonate which is used. Circle your prediction. Explain your answer. [1] (iii) A student adds a little calcium oxide to some water to which has been added some full range indicator solution (Universal Indicator). State and explain the colour change which the student observes. colour change from to explanation

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Neon 10 40 Argon	84 Krypton 36	131 Xe Xenon Xenon 54	Rn Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
	IIΛ		19 Fluorine 9 35.5 C1	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102
	 		16 Oxygen 8 32 Sulfur 16 Sulfur 16	Selenium	128 Te Tellurium	Po Polonium 84		169 Tm Thulium	Md Mendelevium 101
	^		14 Nirogen 7 31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100
	<u> </u>		12 Carbon 6 Silicon 14	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead Lead		165 Ho Holmium 67	ES Einsteinium 99
	III		11 B Boron 5 A1 Auminium 13	70 Ga Gallium 31	115 In Indium 49	204 T î Thallium 81		162 Dy Dysprosium 66	Ca lifornium
				65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97
				64 Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm Curium
Group				59 Zi Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
Ģ				59 Co Cobalt	103 Rh Rhodium 45	192 Ir		Sm Samarium 62	Pu Plutonium 94
		T Hydrogen		56 Fe Iron	Ruthenium	190 Os Osmium 76		Pm Promethium 61	Neptunium
				55 Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	238 U Uranium 92
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
				51 Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Th Thorium
			48 T itanium 22	91 Zroonium 40	178 Hf Hafnium 72			nic mass bol nic) number	
				Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57 *	227 Ac Actinium 89	l series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Beryllium 4 Beryllium 24 Mg Magnesium	40 Ca Calcium 20	Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series	« × □
	_		7 Lithium 3 23 Na Sodium 11	39 K Potassium	Rubidium	133 Cs Caesium 55	Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.