

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Paper 3 (Exten	ded)		May/June 2008
CO-ORDINATE	ED SCIENCES		0654/03
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.


At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
Total		

2 hours

This document consists of **24** printed pages.

1 Fig. 1.1 shows a transverse section through a leaf. The contents of the cells are not shown.

For Examiner's Use

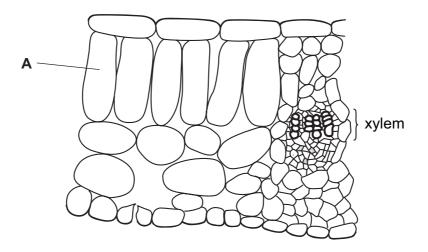


Fig. 1.1

(a) In the space below, make a large, labelled diagram of cell **A**, to show its structure and contents.

[3]

(b) State two functions of xylem tissue in a leaf.

1.

2. [2]

(c) A farmer grows spinach in a glasshouse.

For Examiner's Use

He decided to use artificial lighting to increase the yield of the crop. He tried out four different wavelengths of light.

He measured the volume of carbon dioxide taken up per square metre of leaves per second. He also measured the mass of the spinach leaves that were produced.

Table 1.1 shows his results.

Table 1.1

wavelength of light / nm	units of carbon dioxide taken up per m ² of leaf per second	mass of leaves produced / kg per m²
660	6.5	7.8
670	8.3	8.2
680	10.1	8.8
690	9.1	8.3

(i)	State two variables that should have been kept constant during this experiment.
	[2
(ii)	Which wavelength of light gave the highest yield?
	[1
(iii)	Explain why the pattern for the units of carbon dioxide taken up is similar to the pattern for the mass of leaves produced.
	[2
(iv)	Explain why plants are able to use some wavelengths of light more than other wavelengths.
	[2

2	Sta	rch,	cellulose and proteins are compounds found in plants.
	(a)	(i)	State the chemical symbols of the three elements which are combined together in starch.
			[1]
		(ii)	Plants contain proteins which are compounds containing nitrogen atoms. These atoms have been obtained from gaseous nitrogen in the air by nitrogen fixation.
			Explain the meaning of the term <i>nitrogen fixation</i> .
			[2]
	(b)		monium sulphate is a fertiliser which is produced in a reaction between sulphuric d and ammonia solution. The balanced equation for this reaction is shown below.
			$2 \text{ NH}_3 + \text{H}_2 \text{SO}_4 \rightarrow (\text{NH}_4)_2 \text{SO}_4$
			an attempt to produce a solution containing only ammonium sulphate, a student of the following method.
		1	50.0 cm³ of a solution containing 2.0 mol/dm³ of ammonia were placed into a glass beaker.
		2	$50.0\mathrm{cm^3}$ of a solution containing $2.0\mathrm{mol}/\mathrm{dm^3}$ of sulphuric acid were added to the ammonia solution.
		(i)	Calculate the number of moles of ammonia which the student used. (There are 1000 cm³ in 1 dm³.)
			Show your working.
			[2]
		(ii)	Explain whether or not the student had calculated the correct amount of sulphuric acid to use.
			Show your working.
			[3]

(iii)	The formula of the sulphate ion is SO_4^{2-} . Explain why the formula of ammonium sulphate is $(NH_4)_2SO_4$.
	[2]
	[-]

3 The circuit in Fig. 3.1 was set up and the current measured by meters M_1 , M_2 , M_3 , M_4 and M_5 .

For Examiner's Use

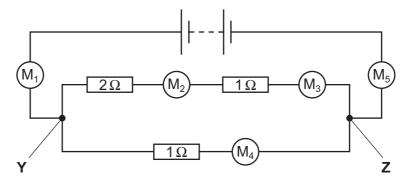


Fig. 3.1

(a) (i) The readings on M_1 and M_2 are shown in Table 3.1. Complete the table for M_3 , M_4 and M_5 .

Table 3.1

$M_1 = 4A$
$M_2 = 1A$
M ₃ =
M ₄ =
M ₅ =

[1]

(ii) Calculate the total resistance of the 2 Ω and 1 Ω resistors in series.

[1]

(iii) Calculate the total resistance between Y and Z.

State the formula that you use and show your working.

formula

working

[3]

	•
(b)	The current flows through M ₁ for one minute.
	Calculate the charge which has passed.
	State the formula that you use and show your working.
	formula
	working
	[2]
(c)	A man walking on a non-conducting floor surface may become positively charged as shown in Fig. 3.2.
	Fig. 3.2
	Explain in terms of charged particles how he acquired this charge.

[3]

4 A doctor may test a person's knee-jerk reflex, to check that the nervous system is working properly. When a sharp tap is given just below the kneecap, one of the thigh muscles contracts so that the lower leg moves quickly upwards.

For Examiner's Use

Fig. 4.1 shows some of the structures involved in the knee-jerk reflex.

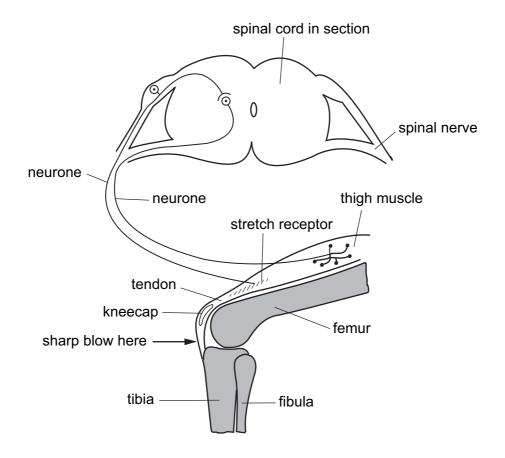


Fig. 4.1

(a)	(i)	Explain what is meant by a <i>reflex action</i> .	
			••••
			••••
			[2]
	(ii)	Explain the value of reflex actions to an organism.	
			••••
			[2]

(b)	(i)	On Fig. 4.1, draw a label to one structure that is part of the central nervous system, and label it CNS. [1]
	(ii)	On Fig. 4.1, draw arrows on the two neurones to show the direction of the nerve impulses as they travel from the receptor to the effector. [1]
(c)		human skeleton is made of bone and cartilage. Cartilage covers the surfaces of tibia and femur at the knee joint.
	(i)	Describe the function of cartilage at the knee joint.
		[2]
	(ii)	State one difference in the properties of bone and cartilage, and explain how this difference helps them to carry out their different functions.
		[2]

5 The bodywork of a car is usually made from steel.

For Examiner's Use

[1]

(a) If part of the bodywork goes very rusty it is usually removed and replaced with plastic filler, before being painted.

A car mechanic can use a magnet to find out if parts of the bodywork of a car have been filled with plastic filler.

He tests three areas of a car by placing a magnet near the surface as shown in Fig. 5.1.

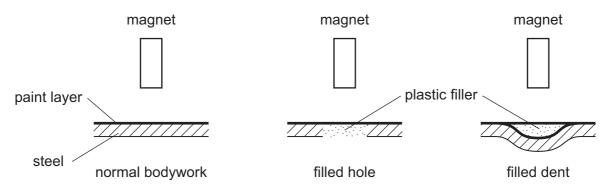


Fig. 5.1

(i) Complete the table.

area	effect on a magnet
normal bodywork	
filled hole	
filled dent	weakly attracted

(ii) What assumption have you made about the properties of plastic filler?

		[1]
(iii)	Would this method work if the bodywork was made of aluminium?	
	Explain your answer.	

(iv) Suggest why the bodywork of some cars is made from aluminium rather than steel.

[1]

.....

(b)		After a car has been driven, the tyres are hot. The air in each tyre has a temperature of 45 °C and the pressure of the air in the tyres is 2.5 N/m².						
	Afte	er a while the temperature of the air in the tyres falls to 25°C.						
	(i)	What is the temperature of the air in the tyres in kelvins when the tyres are at 25 $^{\circ}\text{C}?$						
		K [1]						
	(ii)	Calculate the pressure of the air in the tyres at 25 $^{\circ}\text{C},$ assuming that the volume of the tyre does not change.						
		State the formula that you use and show your working.						
		formula						
		working						
		[3]						
	(iii)	Explain in terms of particles why the pressure of the air in the tyres increases when						
	(,	the temperature increases.						
		[2]						
(c)	(i)	The car has a mass of 1000 kg. It is travelling at 12 m/s when it collides with a wall.						
()	()	Calculate the kinetic energy of the car before the collision.						
		State the formula that you use and show your working.						
		formula						
		working						
		[2]						

(11)	on crash.
	rol
	[2]

6 Fig. 6.1 shows some natural processes which occur on and under the Earth's surface.

For Examiner's Use

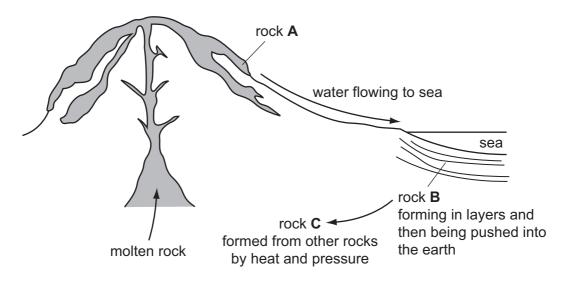


Fig. 6.1

(i) State which rock, A, B or C, was formed when a hot liquid cooled and changed into a solid.
[1
(ii) Rock B formed in layers from tiny pieces of solid (sediment) which were washed down to the sea by rivers and compressed. The sediment was produced from rock A whose surface had been damaged by weathering.
Describe one way in which the surface of rock A could have been weathered.
[2

(b) A sample of the water flowing into the sea, as shown in Fig. 6.1, was taken to a laboratory for testing.

For Examiner's Use

A student observed a drop of water under a microscope.

Fig. 6.2 shows a labelled diagram of what he saw.

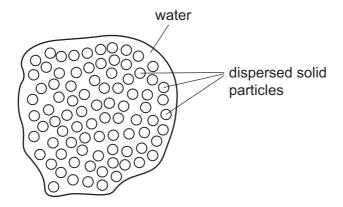


Fig. 6.2

		lain why the water sample looked cloudy and not transparent. You may wish to add ne light rays to Fig. 6.2 to help you answer this question.					
(c)	The	element bromine is extracted from concentrated solutions of bromine compounds.					
	The	reaction between chlorine and sodium bromide solution produces bromine. chlorine + sodium bromide → sodium chloride + bromine					
	(i)	Explain why chlorine but not iodine reacts with sodium bromide.					
		[1]					

(ii) In the boxes below, draw diagrams of a chlorine atom and a bromide ion, showing only the electrons in the outer shells.

For Examiner's Use

chlorine atom	bromide ion				
Cl	Br				

[2]

	(iii) Describe how the numbers of outer electrons of the particles you have drawn in change during the reaction of chlorine with sodium bromide.							
			[2]					
(d)		solution of bromine is used to discover whether a compound is a saturated attracted by drocarbon.	or					
	Exp	plain the meanings of the words saturated and unsaturated hydrocarbon.						
			[2]					

7 (a) Fig. 7.1 shows how the action of the enzyme lipase is affected by temperature.

For Examiner's Use

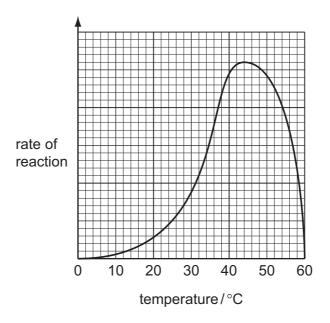


Fig. 7.1

(1)	State the optimum temperature for this enzyme.	
		[1]
(ii)	Explain the shape of the curve between 0 °C and 40 °C.	
		[3]
/:::\	Final in the above of the same between 1500 and 0000	
(111)	Explain the shape of the curve between 45 °C and 60 °C.	
		••••
		[2]

(b)	(i)	Describe the sites of production and action of lipase in the human alimenta canal.	Exa	For miner's Use
			[2]	
	(ii)	Outline the function of lipase.		
			[1]	
(c)		zymes are proteins. Name two kinds of proteins that are found in the human boo er than enzymes, and describe their roles.	dy,	
			[3]	

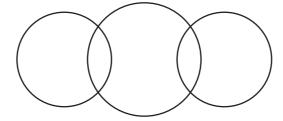
8 Heat energy is obtained when hydrocarbon fuels are burned. Natural gas, methane, is an important hydrocarbon fuel. Natural gas is extracted from the Earth's crust.

For Examiner's Use

(a)	Methane	is a	fossil	fuel	formed	from t	he r	remains	of	organisms.
141	MICHIGING	10 u	100011	1001	10111104			OHIGHIO	\sim .	or garmonic

resulted in the for		to	tne	remains	OT	tnese	organisms	tnat	nas
	 				••••				
									[2]

(b) Biogas is an alternative source of methane made from biodegradable materials. Biogas may be obtained from waste materials stored in landfill sites and from controlled reactions in vessels called digesters. Some information about two sources of biogas is shown in Table 8.1.


Table 8.1

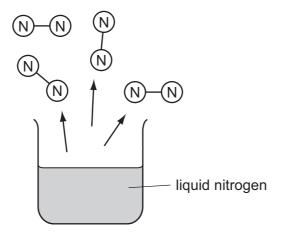
	% of substances in the biogas mixture					
	biogas from a digester	biogas from landfill				
methane	60 – 70	45 – 55				
carbon dioxide	30 – 40	30 – 40				
nitrogen	less than 1	5 – 15				
hydrogen sulphide	0.2	0.03				

(i) Hydrogen sulphide is made of molecules in which two hydrogen atoms are bonded to one sulphur atom.

Complete the bonding diagram below to show

- the chemical symbols of the elements in a molecule of hydrogen sulphide,
- the arrangement of the outer electrons of each atom.

[2]


For
Examiner's
Use

(ii)	When biogas is burned, any hydrogen sulphide present is oxidised.
	The symbolic equation below for this reaction is incomplete.
	State how many molecules of oxygen are required to oxidise two molecules of hydrogen sulphide and explain your answer.
	$2H_2S + \dots O_2 \rightarrow 2H_2O + 2SO_2$
	number of oxygen molecules explanation
	[2]
(iii)	Use the data in Table 8.1 and information in (ii) to suggest and explain one

[2]
iii) Use the data in Table 8.1 and information in (ii) to suggest and explain one advantage and one disadvantage of burning biogas from a digester rather than from landfill.
advantage
disadvantage
[3]

(c) When liquid nitrogen evaporates, nitrogen molecules, N_2 , separate and form nitrogen gas.

For Examiner's Use

Explain, in terms of forces of attraction, why molecules of nitrogen rather th individual atoms of nitrogen separate from each other when liquid nitrogen evaporate	
	[2]

9	(a)		Dolphins can communicate underwater by emitting pulses of sound waves which have a frequency of 40 000 Hz.									
		(i)	The speed of sound waves in water is 1500 m/s.									
			Calculate the wavelength of these waves.									
			State the formula that you use and show your working.									
			formula									
			working									
			[2]									
		(ii)	The speed of sound in air is 330 m/s.									
			Suggest in terms of particles why the speed of sound waves in water is so much greater than the speed of sound waves in air.									
			[2]									

(b) The graph in Fig. 9.1 shows the motion of a dolphin travelling through water.

For Examiner's Use

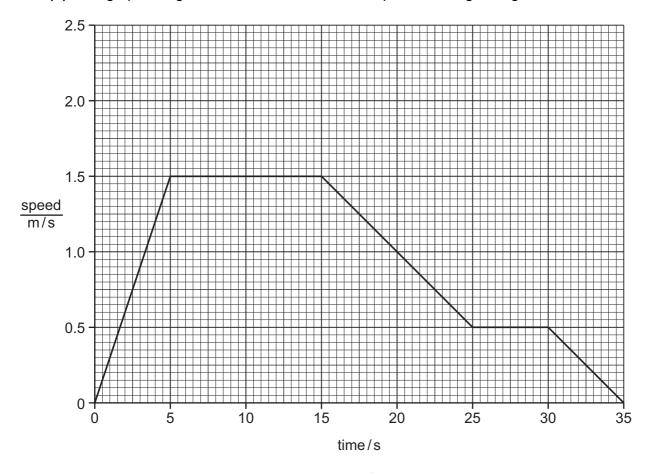


Fig. 9.1

Calculate the distance covered by the dolphin in the first 25 seconds.

Show your working.

[2]

(c) A man in a boat sees a dolphin under the water. Draw a ray of light on Fig. 9.2 to show how light travels from the dolphin's head to the man's eye.

For Examiner's Use

air

water

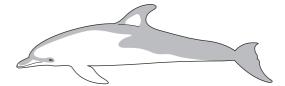


Fig. 9.2

[3]

DATA SHEET
The Periodic Table of the Elements

	0	He Helium	20 Neon 10 40 Ar	Argon 18	8 7 8	Krypton 36	131	Xe	Xenon 54	ı	Ru	Radon 86			175	Lutetium 71		۲	Lawrencium 103
	IIA		19 Fluorine 9 35.5 C1	Chlorine 17	® ॼ	Bromine 35	127	Ι	lodine 53		¥	Astatine 85			173	Ytterbium 70		٩	Nobelium 102
			16 Oxygen 8 32	Sulphur 16	Se	Selenium 34	128	<u>e</u>	Tellurium 52	ı		Polonium 84			169 169			Md	Mendelevium 101
	>		14 Nirogen 7 31	Phosphorus 15			122	Sb	Antimony 51	509	<u></u>	Bismuth 83			167	Erbium 68			Fermium 100
	>		Carbon 6 Carbon 8 28	Silicon 14	Ge 3	Germanium 32	119	Sn		207	РЬ	Lead 82			165	Holmium 67			Einsteinium 99
	≡		11 BB Boron 5 A1	Aluminium 13			115	u I	Indium 49	204	11	Thallium 81			162	Dysprosium 66			Californium 98
		'	,		SS Zn	Zinc 30	112	ပ်	Cadmium 48	201	Нg	Mercury 80			159	Terbium 65		B	Berkelium 97
					² 2	Copper 29	108	Ag		197	Αn	Gold 79			157	Gadolinium 64		Cm	Curium 96
dnc					59 Z	Nickel 28	106	Pd	Palladium 46	195	₹	Platinum 78			152	Europium 63		Am	Americium 95
Group					္မွ	Cobalt 27	103	묎	Rhodium 45	192	<u> </u>	Iridium 77			150	Samarium 62		Pu	Plutonium 94
		1 Hydrogen			56 Fe	Iron 26	101	Ru	Ruthenium 44	190	s O	Osmium 76			2	Promethium 61		dN	Neptunium 93
					Mn	Manganese 25		ဥ	Technetium 43	186	Re	Rhenium 75			144	ž 09	238	-	Uranium 92
					င် အ	Chromium 24	96	Mo	Molybdenum 42	184	>	Tungsten 74			141	Praseodymium 59		Ра	Protactinium 91
:					⁵ >	Vanadium 23	93	QN.	Niobium 41	181	Цa	Tantalum 73			140	Cerium 58	232	T	Thorium 90
					48	Titanium 22	91	Zr	Zirconium 40	178	Ξ	Hafnium 72					nic mass	poq	nic) number
			ı		Sc Sc	Scandium 21	68	>	Yttrium 39	139	Ľ	Lanthanum 57 *	227 Ac	1 89	1 series	series	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number
	=		Be Beryllium 4	Magnesium 12	⁶ в	Calcium 20	88	S	Strontium 38	137	Ba	Barium 56	226 Ra	88	*58-71 Lanthanoid series	†90-103 Actinoid series	а	×	٩
	_		Lithium 3 23 Na	Sodium 11	® ×	Potassium 19	85	S S	Rubidium 37	133	S	Caesium 55	Fr	87	*58-71 L	190-103		Key	Ω

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.