

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CO-ORDINATE	ED SCIENCES		0654/02
Paper 2 (Core)			May/June 2008
			2 hours
Candidates ans	wer on the Question Paper.		
No Additional M	laterials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Total	

This document consists of 23 printed pages and 1 blank page.

1 Fig. 1.1 shows a section through a human eye.

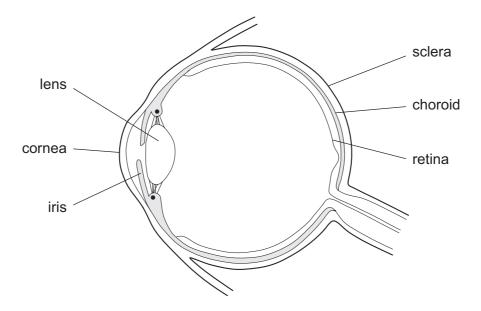
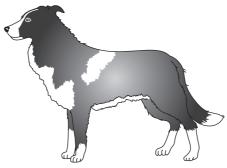



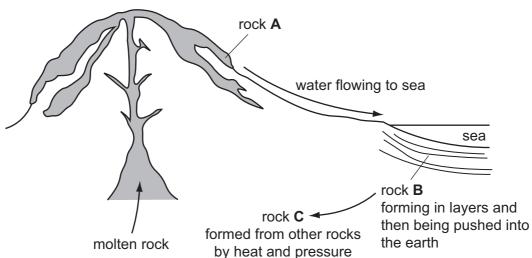
Fig. 1.1

(b) Describe the function of the following parts of the eye.	
(b) Describe the function of the following parts of the eve	[1]
(b) Describe the function of the following parts of the eye.	
(i) the lens	
	[2]
(ii) the retina	

© UCLES 2008 0654/02/M/J/08

(c) Collies are a breed of dog that have been bred to herd sheep and cattle. A recessive allele, **a**, in collies causes the choroid to develop abnormally. This can cause blindness.

(i)	What is the phenotype	e of a collie with the	genotype aa?		
				[1]
	eders of collies try to lease.	make sure that non	e of the puppi	es that are born inherit thi	s
	ollie breeder mates a notype Aa .	male dog with the	genotype AA ,	and a female dog with the	е
(ii)	Complete the genetic the choroid disease.	diagram to explair	n whether any	of their puppies will inher	it
	parents	AA	Aa		
	gametes	all A	and		
	offspring genotypes				
	offspring phenotypes			[3	3]

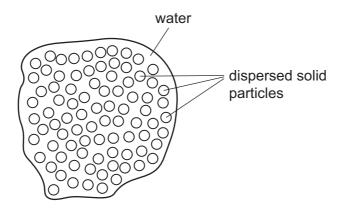

2	(a)	The mass of a golf ball is 40 g.		
		Its volume is 35 cm ³ .		
		Calculate the density of the golf ball.		
		State the formula that you use and show your working.		
		formula		
		working		
			. 3	
			g/cm ³	[2]
	(b)	A golfer hits the ball.		
		Calculate the momentum of the golf ball when it has a velo	ocity of 40 m/s.	
		State the formula that you use and show your working.		
		formula		
		working		
			kg m/s	[2]

(c)	The	golfer's bag of clubs has a mass of 6 kg.	
	(i)	Calculate the weight of the bag of clubs. Assume that the gravitational field strength on Earth is 10 N/kg.	
		N	[1]
	(ii)	Calculate the work done by the golfer when the bag is lifted 0.5 metres.	
		State the formula that you use and show your working.	
		formula	
		working	
		J	[2]

For Examiner's

Use

3 Fig. 3.1 shows some natural processes which occur on and under the Earth's surface.


		biological	chemical	physical [1]]
	(iii)	Underline the word in the you have described in part	•	names the type of weathering)
				[2	.]
	(ii)	Describe one way in whice	ch the surface of rock A coul	-	,
	()			[1]
	(i)	What general name is giv	en to rocks like rock B ?		
(b)	and		eces of solid were produced	ed down into the sea by rivers d from rock A whose surface	
				[1]
(a)	Sta soli		was formed when a hot liqu	id cooled and changed into a	ì
			Fig. 3.1		
		molten rock	by heat and pressure	the earth	

(c) A sample of water flowing into the sea, as shown in Fig. 3.1, was taken to a laboratory for testing.

For Examiner's Use

A student observed a drop of the water under a microscope.

Fig. 3.2 shows a labelled diagram of what he saw.

	Fig. 3.2
(i)	What general name is given to a mixture in which one substance is finely dispersed throughout another?
	[1]
(ii)	The student stated that the mixture he was observing was an example of an emulsion.
	Explain whether or not the student's statement was correct.
	[2]
iii)	The student then added a few drops of acidified barium nitrate solution to some of the water. A white precipitate was formed.
	What may be concluded about the water sample from this result?
	[1]

4 Fig. 4.1 shows a transverse section through a leaf.

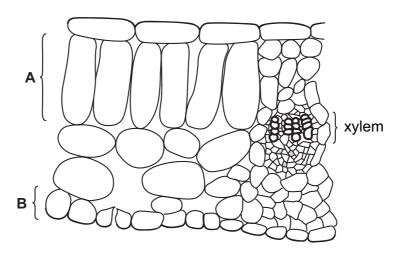


Fig. 4.1

(a)	(i)	Name the tissues labelled A and B .	
		A	
		В	[2]
	(ii)	State two ways in which a cell in tissue A differs from an animal cell.	
		1.	
		2.	[2]
	(iii)	On Fig. 4.1, draw an arrow to show where carbon dioxide enters the leaf.	[1]
(b)	Sta	te two functions of xylem tissue in a leaf.	
	1.		
	2		[2]

5 (a) The graph in Fig. 5.1 shows the motion of a dolphin travelling through water.

For Examiner's Use

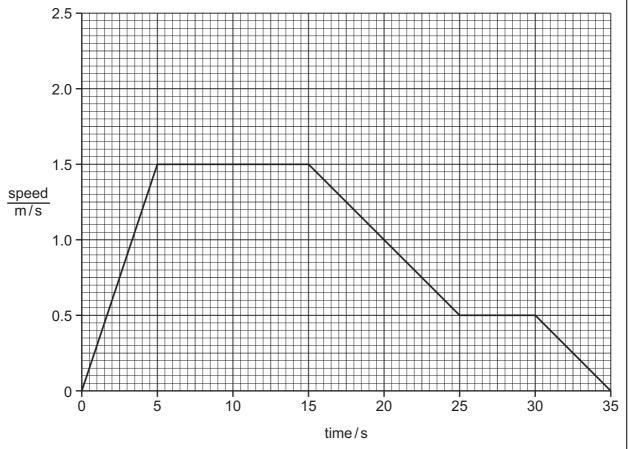


Fig. 5.1

- (i) On the graph, label with an **S** a period when the dolphin was moving at a constant speed. [1]
- (ii) Describe the motion of the dolphin between 0s and 5s.

[1]

(b) Table 5.1 shows the maximum and minimum frequencies of sounds heard by dolphins, humans and whales.

For Examiner's Use

Table 5.1

animal	maximum frequency / kHz	minimum frequency / Hz
dolphin	110	40
human	20	20
whale	1	2

	(i)	What is meant by the term frequency?	
			1]
	Wł	nich animal can hear	
	(ii)	the greatest range of frequencies,	1]
	(iii)	the sound with the highest pitch?	1]
(c)	Ac	dolphin locates an object by emitting a pulse of high frequency sound.	
		e pulse takes 0.2s to reach the object and return to the dolphin after reflection. The eed of the sound pulse in water is 1500 m/s.	е
	Ca	lculate the distance between the dolphin and the object.	
	Sta	ate the formula that you use and show your working.	
		formula	
		working	
		m [3	3]

(d) A man in a boat sees a dolphin under the water. Draw a ray of light on Fig. 5.2 to show how light travels from the dolphin's head to the man's eye.

For Examiner's Use

air

water

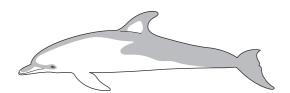


Fig. 5.2

[3]

6 Fig. 6.1 shows diagrams of some atoms of elements in Group I of the Periodic Table.

Li

Fig. 6.1

	1 19. 0. 1
(a) (i)	Describe briefly two differences in the properties of lithium and potassium.
	1.
	2.
	[2]
(ii)	When sodium reacts with water, sodium atoms change into sodium ions. Draw a diagram of a sodium ion showing how all the electrons are arranged.
	[1]
(iii)	Rubidium is another metal in Group I. Explain why a rubidium ion has a single positive electrical charge.

© UCLES 2008 0654/02/M/J/08

For Examiner's Use

[1]

(b) Fig. 6.2 shows apparatus a student used to investigate electrochemical cells.

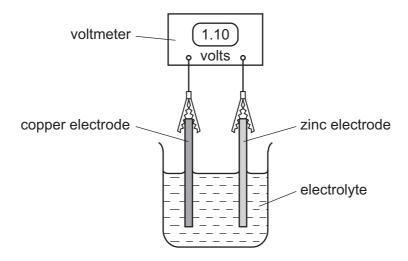
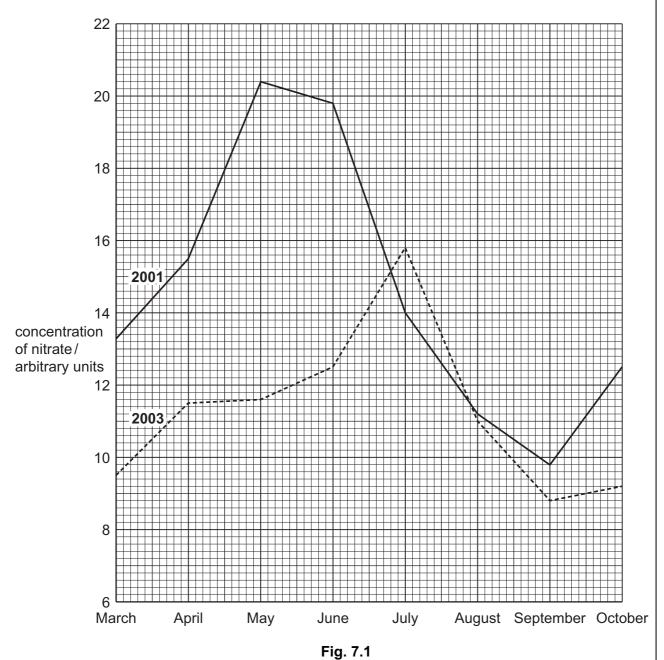


Fig. 6.2

Table 6.1 shows some properties of substances which the student thought might be suitable to produce the electrolyte.

Table 6.1

substance	type of bonding	solubility in water
calcium carbonate	ionic	insoluble
glucose	covalent	soluble
magnesium sulphate	ionic	soluble
silicon dioxide	covalent	insoluble


(i)	State and explain which one of the substances in Table 6.1 is suitable for making the electrolyte.
	[2]
(ii)	Describe briefly what change the student could make to the apparatus in Fig. 6.2 in order to obtain a different value of the cell voltage.
	[1]

7 A farmer has grown corn (maize) in the same field for several years.

He measured the concentration of nitrate in the soil in 2001 and in 2003.

For Examiner's Use

(a) (i) In 2001, in which month was the concentration of nitrate in the soil the highest?

[1]

	(ii) Describe two ways in which the nitrate concentration in the soil in 2003 was different from the concentration in 2001.					
		1.				
		2[2]				
(b)		farmer was worried that the nitrate concentration in the field might be too low. He ided to try to increase it.				
	(i)	Explain why increasing the nitrate concentration in the field might help the farmer.				
		[2]				
	(ii)	Suggest how he could increase the nitrate concentration in the field.				
		[1]				
(c)	The	farmer feeds the maize to cattle. He sells meat from the cattle for people to eat.				
	(i)	Draw a food chain to show this information.				
		[1]				
	(ii)	What do the arrows in your food chain represent?				
		[1]				
(d)	Whe	en the maize plants are harvested, their roots are left in the soil.				
Describe how the carbon compounds in the roots will be turned into carbon diox released into the air.						
		[2]				

- 8 The bodywork of a car is usually made from steel.
 - (a) If part of the bodywork goes very rusty it is usually removed and replaced with plastic filler, before being painted.

A car mechanic can use a magnet to find out if parts of the bodywork of a car have been filled with plastic filler.

He tests three areas of a car by placing a magnet near the surface as shown in Fig. 8.1.

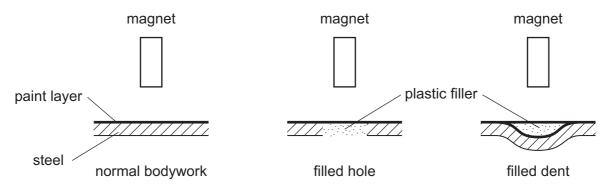


Fig. 8.1

(i) Complete the table.

area	effect on a magnet
normal bodywork	
filled hole	
filled dent	weakly attracted

വ	
_	

		[2]
(ii)	What assumption have you made about the properties of plastic filler?	
		[1]
(iii)	Would this method work if the bodywork was made of aluminium?	
	Explain your answer.	
		[1]
(iv)	Suggest why the bodywork of some cars is made from aluminium rather than ste	el.
		[1 ⁻

(b)	Exhaust gases from a car engine leave the car through a solid steel exhaust pipe.				
	Complete the sentences below about solids and gases. Use only the words solid or gas .				
	In a, the particles are closer together than in a				
The forces of attraction between particles are stronger in athan in a					
	When a is heated it will eventually turn into a liquid.				
	In a, the particles can only vibrate and not move.				
	Heat energy will travel through a by conduction.				
	Heat energy will not travel through a by convection.	[4]			

9

Explain why the burning of hydrocarbon fue changes to our environment.	
Explain why the burning of hydrocarbon fue changes to our environment. Biogas is an alternative source of methane ma	els is thought to be causing significa
Biogas is an alternative source of methane ma	
c) Biogas is an alternative source of methane ma	
c) Biogas is an alternative source of methane ma	
c) Biogas is an alternative source of methane ma	
, .	de from biodegradable materials. Biog
Some information about two sources of biogas	-
Table 9.7	
% of substan	ces in the biogas mixture
biogas from a dige	ster biogas from landfill
methane 60 – 70	45 – 55
carbon dioxide 30 – 40	30 – 40
nitrogen less than 1	5 – 15

BLANK PAGE

0654/02/M/J/08 **[Turn over**

10	Enz	zymes are proteins	s that act as cat	alysts.			
	(a)	Explain the mean	ning of the term	catalyst.			
							[2]
	(b)	Amylase, proteas	se and lipase a	re enzymes that dig	est food in the	alimentary canal.	
		Draw lines to lin that digestion pro		e with the food typ	e that it digest	s, and the molecul	les
		food digested		enzyme	m	nolecules produce	ed
		fats		amylase		amino acids	
	Г		l I	_	l	fatty acids]
	L	proteins		protease		and glycerol	
		starch		lipase		maltose (sugar)]
							[3]
	(c)	A good diet conta	ains fibre. Fibre	cannot be digested	d.		
	(-)	_		ibre that is eaten.			
							[2]
		(ii) Explain why	fibre is an impo	ortant part of a heal	thy diet.		
							 [1]
	((iii) Name one fo		od source of fibre.			[,]
			J				[1]

11	Sta	rch,	cellulose and proteins are compounds found in plants.	
	(a)	(i)	State the chemical symbols of the three elements which are combined togethe in starch.	r
			[1]
		(ii)	The chemical bonds in starch are formed by atoms sharing pairs of electrons.	
			Name this type of chemical bonding.	
			[′	1]
	(b)		nts contain proteins, which are compounds containing nitrogen atoms. These atom re been obtained from gaseous nitrogen in the air by nitrogen fixation.	s
		(i)	Explain the meaning of the term <i>nitrogen fixation</i> .	
				••
				2]
		(ii)	When some types of protein are heated in sodium hydroxide solution, a gas i produced which turns damp red litmus paper blue.	s
			Name this gas.	
			[1]
		(iii)	A nitrogen atom has a <i>nucleon number</i> of 14.	
			Explain this statement.	
				••
			[2	2]
	(c)		ite two important types of compound, other than those used for food, which may be racted from plants.	е
		1.		
		2.	[2	21

0654/02/M/J/08 **[Turn over**

12 (a) The circuit in Fig. 12.1 was set up and the current measured by meters $M_1,\ M_2,\ M_3,\ M_4$ and $M_5.$

For Examiner's Use

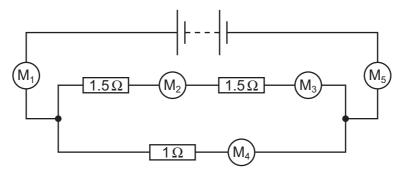


Fig. 12.1

(i) What type of meter is M_1 ?

[1]

(ii) The readings on M_1 , M_3 , M_4 , and M_5 are shown in Table 12.1.

Complete the table for M₂.

Table 12.1

$M_1 = 4$	Α
M ₂ =	
$M_3 = 1$	Α
$M_4 = 3$	8A
$M_5 = 4$	Α

(iii) Calculate the total resistance of the 1.5 Ω and 1.5 Ω resistors in series.

[1]

[1]

	(iv)	The voltage across the	1 Ω resistor is 3 V.		
		Use the formula	power = voltage x current		
		to calculate the power co	onsumed in the 1 Ω resistor.		
		Show your working.			
				W	[1]
(b)	The	e current flows through M	for one minute.		
	Cal	culate the charge which h	nas passed.		
	Sta	te the formula that you us	se and show your working.		
		formula			
		working			
				C	[2]

DATA SHEET
The Periodic Table of the Elements

	0	4 Helium	20 Ne Neon	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon	Rn Radon 86		175 Lu Lutetium	Lr Lawrencium 103
Group	IIA		19 F Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102
	IN		16 O Oxygen 8	32 S Sulphur 16	Se Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm Thulium	Md Mendelevium 101
	^		14 N Nitrogen 7	31 P Phosphorus 15	75 As Arsenic	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68	Fm Fermium 100
	N		12 C Carbon 6	28 Si Silicon	73 Ge Germanium	119 Sn Tin	207 Pb Lead		165 Ho Holmium 67	Esteinium 99
	=		11 Boron 5	27 A1 Auminium 13	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium		Dy Dysprosium	Cf Californium 98
					65 Zn Znc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97
					64 Cu Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm Ourium
					59 Nickel	106 Pd Palladium	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
					59 Co Cobalt	103 Rh Rhodium 45	192 Ir Iridium		Samarium 62	Pu Plutonium 94
		1 Hydrogen			56 Fe Iron	Ruthenium	190 Os Osmium 76		Pm Promethium 61	Neptunium
					Min Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	238 U Uranium 92
					Chromium	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91
					51 Vanadium 23	Niobium 41	181 Ta Tantalum 73		140 Ce Cerium	232 Th Thorium
					48 T Trtanium	91 Zr Zirconium 40	178 Hf Hafnium 72		1	nic mass ibol nic) number
					Scandium 21	89 ≺	La Lanthanum 57 *	Ac Actinium t	d series series	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Be Beryllium	24 Mg Magnesium 12	40 Ca Calcium	Sr Strontium	137 Ba Barium 56	226 Rad Radium	*58-71 Lanthanoid series 190-103 Actinoid series	<i>a</i> ★ <i>a</i>
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	Rb Rubidium 37	133 Cs Caesium 55	Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.