Centre Number	Candidate Number	Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CO-ORDINATED SCIENCES

Paper 2

October/November 2005
2 hours
Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen in the spaces provided on the Question Paper.
You may use a soft pencil for any diagrams, graphs, tables or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
The number of marks is given in brackets [] at the end of each question or part question.
A copy of the Periodic Table is printed on page 24.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

This document consists of $\mathbf{2 2}$ printed pages and $\mathbf{2}$ blank pages.

1 (a) Fig. 1.1 shows what happens when a beam of white light passes through a prism. \mathbf{A} and \mathbf{B} are the two ends of the visible spectrum seen on the screen.

Fig. 1.1
(i) State the colour seen at \mathbf{A}.
\qquad
(ii) State the colour seen at B.
\qquad
(b) Red is said to be a primary colour, while yellow is said to be a secondary colour. Explain what is meant by this statement and name one other primary colour and one other secondary colour.
explanation
\qquad
\qquad
primary colour \qquad
secondary colour
(c) Below is a list of some waves.

gamma	infra-red	radio	sound
ultrasound	ultraviolet	visible light	

Write down one wave from the list that is
(i) a transverse wave,
\qquad
(ii) a longitudinal wave,
\qquad
(iii) emitted by hot objects but cannot be seen by the human eye.
\qquad
(d) A fishing boat uses echo sounding to detect a shoal of fish.

Short pulses of high frequency sound are sent out from the boat and the echo from the shoal of fish is detected 0.2 seconds later.

Sound waves travel through water at a speed of $1600 \mathrm{~m} / \mathrm{s}$.

Calculate the distance that the shoal of fish is below the boat.
Show your working and state the formula that you use.
formula used
working

2 Fig. 2.1 shows the main stages in an industrial process to convert cellulose obtained from trees into cellophane. Cellophane is produced in the form of thin, transparent sheets.

Fig. 2.1
(a) The molecules in cellulose are natural polymers.
(i) Name the monomer which is polymerised to form cellulose.
\qquad
(ii) Draw a circle around the chemical symbols below which represent the three main elements combined in cellulose.
C Ce
H
He
Lu
O Os
(iii) Draw a small section of a cellulose molecule.

Use the symbol - M - to represent one of the monomer molecules.
(b) The formula of sodium sulphite is $\mathrm{Na}_{2} \mathrm{SO}_{3}$.

State the number of different elements which are shown in this formula.
...
(c) (i) Suggest the type of chemical bonding in carbon disulphide.
\qquad
(ii) Explain your answer to (c)(i).
\qquad
\qquad
(d) Cellophane is used as a partially permeable membrane in haemodialysis. Haemodialysis is a procedure used to remove small toxin molecules and excess water from the blood of patients with kidney disease.

Fig. 2.2 shows a schematic diagram of haemodialysis.

Fig. 2.2
Describe briefly how the partially permeable membrane functions to clean the patient's blood.
\qquad
\qquad
\qquad
\qquad

3 Fig. 3.1 shows a vertical section through a human heart.

Fig. 3.1
(a) Name the parts labelled A and B.

A

B
(b) Using a labelling line and the letter \mathbf{M}, label the muscular wall of the left ventricle.
(c) The muscular walls of the heart are supplied with oxygen by blood that flows through the coronary arteries.

Explain why the heart muscle needs a supply of oxygen.
\qquad
\qquad
\qquad
(d) If a coronary artery is blocked, the person may suffer a heart attack. Table 3.1 shows part of a chart which doctors in New Zealand use to estimate the chances of a woman having a heart attack.

Table 3.1

	percentage of women who are expected to have a heart attack within 5 years			
	age 40	age 50	age 60	age 70
non-smokers	1	3	5	7
smokers	4	6	12	15

(i) Use the information in Table 3.1 to describe how a woman's age affects her
\qquad
\qquad
\qquad
(ii) If a 50 year old woman gives up smoking, suggest how this will affect her chances of having a heart attack.
\qquad
\qquad
(iii) Suggest one factor, other than age or smoking, which could affect the chances of a person having a heart attack.
\qquad

Abstract

chances of having a heart attack, if she does not smoke.

4 Fig. 4.1 shows a flying squirrel. A flying squirrel uses large flaps of skin as a form of parachute to enable it to fall, glide and land safely. The air trapped under these flaps, as the squirrel falls, provides an upward force called air resistance.

Fig. 4.1
(a) (i) As the squirrel starts to fall, it is accelerating. State the meaning of the term accelerating.
\qquad
\qquad
(ii) The squirrel weighs 20 N . Suggest a value for the air resistance while the squirrel is accelerating.
air resistance N

Explain your answer.
\qquad
(b) As the squirrel falls, it reaches a steady speed (terminal velocity) of $3 \mathrm{~m} / \mathrm{s}$.
(i) State the value of the air resistance now.
air resistance
Explain your answer.
\qquad
\qquad
(ii) The surface area of the squirrel on which the air resistance acts is $0.4 \mathrm{~m}^{2}$. Use your answer to (b)(i) and the formula

$$
\text { pressure }=\frac{\text { force }}{\text { area }}
$$

to calculate the pressure on the squirrel.
Show your working.
\qquad $\mathrm{N} / \mathrm{m}^{2}$
(c) (i) The mass of the squirrel is 2 kg . Calculate the kinetic energy of the squirrel when it is falling at its terminal velocity of $3 \mathrm{~m} / \mathrm{s}$.

Show your working and state the formula that you use.
formula used
working
(ii) When the squirrel reaches the ground, it has lost its kinetic energy. Suggest where this energy has gone.

5 (a) Table 5.1 shows some information about two elements \mathbf{X} and \mathbf{Y}. Both elements are in the third period of the Periodic Table.
Complete the table by writing the words high or low in the empty boxes. Two of the boxes have already been completed.

Table 5.1

element	group number in Periodic Table	melting point	electrical conductivity	pH of element oxide in water
\mathbf{X}	2	high		
\mathbf{Y}	7	low		

(b) Metallic elements are usually extracted from metal compounds found in rocks.

A compound from which the metal titanium can be extracted is ilmenite, TiFeO_{3}.
(i) Name the other metallic element present in ilmenite.
\qquad
(ii) In order to obtain titanium, ilmenite is first processed to form titanium chloride.
titanium chloride + magnesium \rightarrow magnesium chloride + titanium
Magnesium is an expensive metal. Suggest why magnesium is used rather than a cheaper metal such as iron.
\qquad
(iii) The titanium formed in the reaction in (ii) has to be melted and allowed to cool
(iii) The titanium formed in the reaction in (ii) has to be melted and allowed to cool
before it can be sold. The titanium is melted in a container in which all the air has been replaced by argon.

Suggest and explain why the air is replaced by argon before the titanium is melted.
\qquad
\qquad
\qquad
(c) Alloys containing large amounts of titanium are widely used to make replacement hip joints.

Suggest and explain two properties of titanium alloy which make it a suitable material from which to make replacement hip joints.
property \qquad
reason
\qquad
property \qquad
reason \qquad

6 Fig. 6.1 shows a section through a human eye. The eye is focused on a distant object.

Fig. 6.1
(a) On the diagram, continue the rays of light to show how they are brought to a focus.
(b) The iris is the coloured part of the eye. It can become wider or narrower to regulate the

The colour of the iris of a rabbit is determined by the rabbit's genes. A rabbit with the genotype $\mathbf{B b}$ or $\mathbf{B B}$ has brown eyes. A rabbit with the genotype bb has yellow eyes.
(i) Use this information to help you to complete these sentences.

Different forms of a gene, such as \mathbf{B} and \mathbf{b}, are called alleles.
In rabbits, allele \qquad is dominant.

The phenotype of a heterozygous rabbit is \qquad ..

The two possible homozygous genotypes are \qquad and \qquad [3]

Abstract

amount of light that can reach the retina.

 . and(ii) Use a genetic diagram to explain how two rabbits with brown eyes may have young with yellow eyes.
(c) Occasionally, a mutation occurs in some of the cells of the iris, which may result in the iris becoming a different colour.
(i) What is a mutation?
\qquad
\qquad
(ii) State one type of radiation which may cause mutation and explain how it does this.
\qquad
\qquad
\qquad

7 (a) A car has two headlight lamps. The lamps are connected in parallel with each other across a 12 V battery.
(i) Complete the circuit diagram to show how the lamps are connected to the battery. Include a switch in your circuit to control the two lamps.

(ii) If one lamp fails, the other stays lit. Explain why this happens.
\qquad
\qquad
(b) The visible light given out by the lamps forms part of the electromagnetic spectrum.

State one other form of electromagnetic radiation and give a use for it. electromagnetic radiation
use
(c) Fig. 7.1 shows a speaker for a car radio.

Fig. 7.1

Explain why the cone of the speaker vibrates when an alternating current passes through the coil.
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Explain in terms of particles why adding more air to a car tyre increases the pressure in
\qquad
\qquad
\qquad
\qquad
\qquad

the tyre.

8 The chemical symbol of the element lithium is shown below.

(a) (i) State the number of neutrons in the nucleus of this lithium atom.
\qquad
(ii) State the number of electron shells (energy levels) in a lithium atom.
\qquad
(iii) Lithium is obtained as the free element by electrolysis of molten lithium chloride, LiCl.

Explain briefly why lithium ions travel to the cathode in this process.
\qquad
\qquad
\qquad
(iv) Name the other product formed when lithium chloride is electrolysed.
\qquad
(b) (i) When lithium burns in air, a white solid product is formed.

Suggest the name of this white solid.
\qquad
(ii) Lithium reacts with water according to the word equation below.

$$
\text { lithium }+ \text { water } \rightarrow \text { lithium hydroxide }+ \text { hydrogen }
$$

Fire-fighters were called to put out burning lithium at a factory.
Explain why fire-fighters must not use water to try to extinguish burning lithium.
\qquad
\qquad
\qquad
(iii) Suggest how the fire-fighters could extinguish the burning lithium.
\qquad
\qquad

9 (a) Fig. 9.1 shows a tissue from a plant. The cells in this tissue do not photosynthesise. Fig. 9.2 shows some cells from an animal.

Fig. 9.1

Fig. 9.2
(i) State one place in a plant that you would expect to find the cells shown in Fig. 9.1.
(ii) Use what you can see on the diagrams in Fig. 9.1 and Fig. 9.2 to describe two differences between a plant cell and an animal cell.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
(iii) The plant cells in Fig. 9.1 do not photosynthesise. In the space below, draw a diagram of a plant cell from a leaf, which can photosynthesise.

Label your diagram to show how this cell differs from the ones shown in Fig. 9.1.
(b) A gardener grows pepper plants in a glasshouse. She decides to add some nitrogen-containing fertiliser to make the plants grow faster and larger.
(i) Suggest one compound which can be found in a fertiliser and which provides nitrogen to the plants in a form that they can use.
\qquad
(ii) Explain why extra nitrogen can increase the growth of plants.
\qquad
\qquad
\qquad
(c) Insects called whitefly begin to feed and reproduce on the pepper plants. The gardener
(i) Use this information to construct a food chain.
\qquad
(ii) Predict what will happen to the size of the whitefly population after the wasps have
been put into the glasshouse.
\qquad
(iii) Suggest why the gardener chose to use wasps to control the whitefly pests rather than using a pesticide.
\qquad
\qquad

puts some small wasps that feed on the whitefly into the glasshouse.

\qquad

10 Fig. 10.1 shows the apparatus a student used to investigate the effect of strong heating on sodium hydrogencarbonate, NaHCO_{3}.

Fig. 10.1
Table 10.1 shows observations the student made before and after heating the sodium hydrogencarbonate for several minutes.

Table 10.1

	before heating	after heating
flask \mathbf{A}	white solid	white solid
tube \mathbf{B}	tube empty	water has condensed
tube \mathbf{C}	clear liquid	liquid has become cloudy

(a) (i) State two observations from Table 10.1 which show that a chemical reaction occurs when sodium hydrogencarbonate is heated.

1. \qquad
\qquad
2. \qquad
\qquad
(ii) The white solid which remains in flask \mathbf{A} after heating is sodium carbonate.

Complete the word equation for the effect of strong heating on sodium hydrogencarbonate. Do not write a symbolic equation.

[2]
(b) A sample of hard water is shaken with soap solution. Describe two observations which would show that the water is hard.
\qquad
\qquad
\qquad

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
DATA SHEET
The Periodic Table of the

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).
The Periodic Table of the Elements

