Candidate

Number

Candidate Name

International General Certificate of Secondary Education CAMBRIDGE INTERNATIONAL EXAMINATIONS

COMBINED SCIENCE CO-ORDINATED SCIENCES

PAPER 6 Alternative to Practical

OCTOBER/NOVEMBER SESSION 2002

1 hour

Candidates answer on the question paper. No additional materials are required.

TIME 1 hour

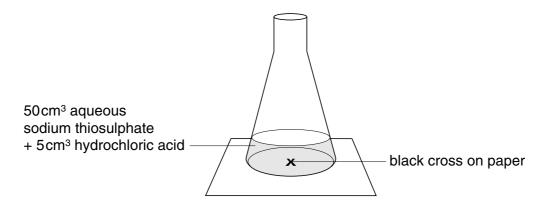
INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer all questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.


FOR EXAMINER'S USE			
1			
2			
3			
4			
5			
6			
TOTAL			

This question paper consists of 12 printed pages.

University of CAMBRIDGE Local Examinations Syndicate 2

- 50 cm³ of aqueous sodium thiosulphate, was placed in a conical flask.
- The conical flask was warmed to a temperature of 30 °C.
- 5 cm³ of hydrochloric acid was added to the conical flask and a clock was started.
- The flask was placed on top of a black cross drawn on white paper, as shown in Fig. 1.1.
- The time taken for enough precipitate to form, so that the cross could not be seen, was noted in Fig. 1.2.

temperature/°C	30	40	50	60	70
time taken for cross to disappear/s	75				

The procedure was repeated at four different temperatures. The times taken for the precipitates to form are shown in Fig. 1.3.

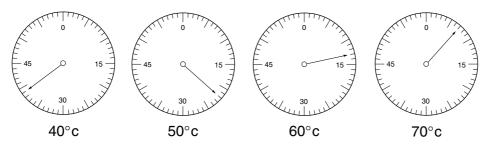
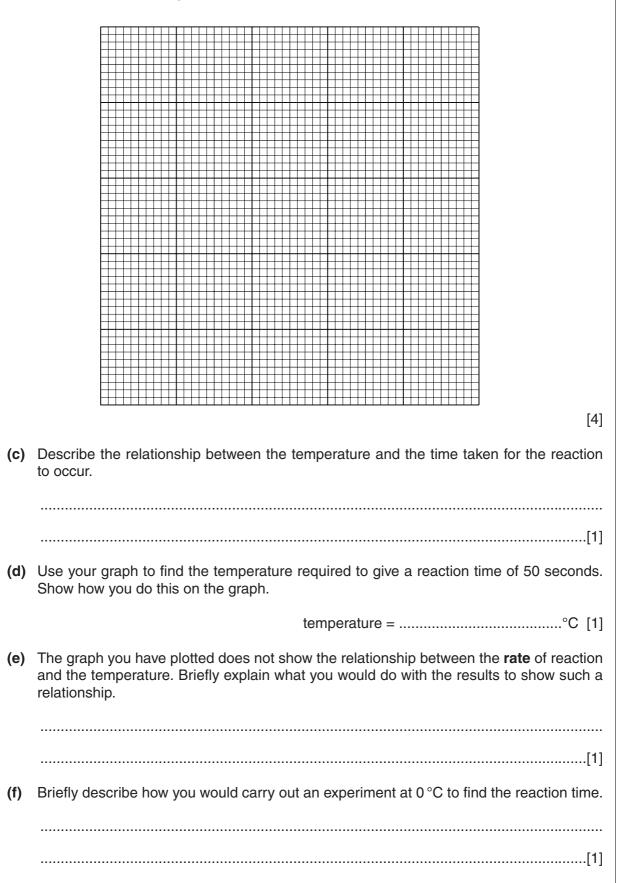



Fig. 1.3

(a) Read the clock dials in Fig. 1.3 and record the times in Fig. 1.2.

[2]

(b) On the grid provided, plot a graph of time (vertical axis) against temperature, and draw a smooth curve through the points.

2 A student did the following experiment to investigate the effect of two different solutions on potato cells.

4

Using a potato she carefully prepared four chips of size $8.0 \times 0.5 \times 0.5$ cm.

She put each chip into a separate test-tube.

She then added solution **A** to two of the tubes. She added enough to cover the chips. She added solution **B** to the other two test-tubes, as shown in Fig. 2.1.

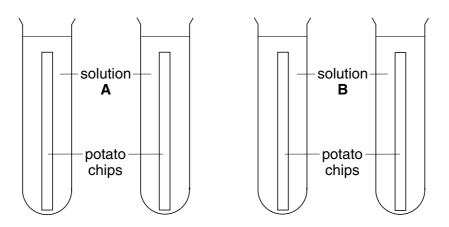


Fig. 2.1

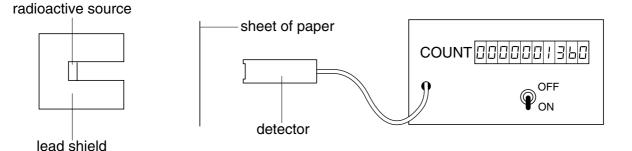
She left the four tubes for 30 minutes.

After this time she removed the chips from the solutions, and measured their lengths.

One chip from **A** and one from **B** have already been measured.

(a) (i) Using a ruler measure the lengths of the two other chips. Record the values in Fig. 2.3.

chip from solution A				
chip from solution B				
Fig. 2.2				
length of chip from solution A/cm	length of chip from solution ${f B}/{f cm}$			
7.7				


8.2

[2]

Fig. 2.3

(ii)	Calculate the average length of the pairs of chips
	from solution A,
	from solution B .
	[2]
(iii)	All the chips were 8.0 cm long at first. Use the average value to calculate the percentage change in length of chips from solution A .
	[2]
	Water can move into or out of the chips depending on the concentration of the solutions A or B .
(b) (i)	
	[1]
(ii)	
	[1]
• •	potato chip was put into a new solution, C . After 30 minutes there was no change in a length of the potato chip. Suggest a reason why there was no change.
	[0]
	[2]

3 The teacher demonstrated the use of a Geiger-Muller tube, connected to a scaler, to investigate a radioactive sample. The apparatus is shown in Fig. 3.1.

Fi	a	3	1
	м	v	

In each experiment, the radioactivity was counted for five minutes or for ten minutes. Fig. 3.2, shows how the count rate was changed when sheets of paper, aluminium and lead were placed in front of the detector and when the radioactive source was removed.

expt. no	how the count was done	total count	time of count/minutes	counts per minute
1	nothing was placed between the source and the detector	3875	5	
2	a sheet of paper was placed between the source and the detector	1760	5	
3	a 1 mm sheet of aluminium was placed between the source and the detector	640	5	
4	a 3 mm thick sheet of aluminium was placed between the source and the detector	335	5	
5	a 3 mm sheet of lead was placed between the source and the detector	170	10	
6	the source was taken away from the apparatus	90	10	

Fig. 3.2

(c)	Use	the data in the table to suggest
	(i)	what type of radiation was detected in experiment 5,
	(ii)	what types of radiation were stopped by the aluminium in experiment 4,
		and [2]
	(iii)	what type of radiation was stopped by the paper in experiment 2.
(d)		e one rule for the safety of the teacher and the class when a radioactive source is ng used in an experiment.
		[1]
(e)	Stat	e how the radioactive source should be stored when it is not in use.
		[2]

4 A student did an experiment to compare the carbon dioxide content of inspired (breathed in) air with that of expired (breathed out) air. He used the apparatus in Fig. 4.1

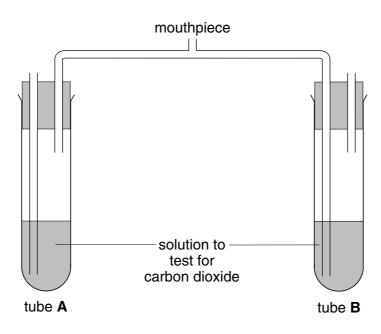
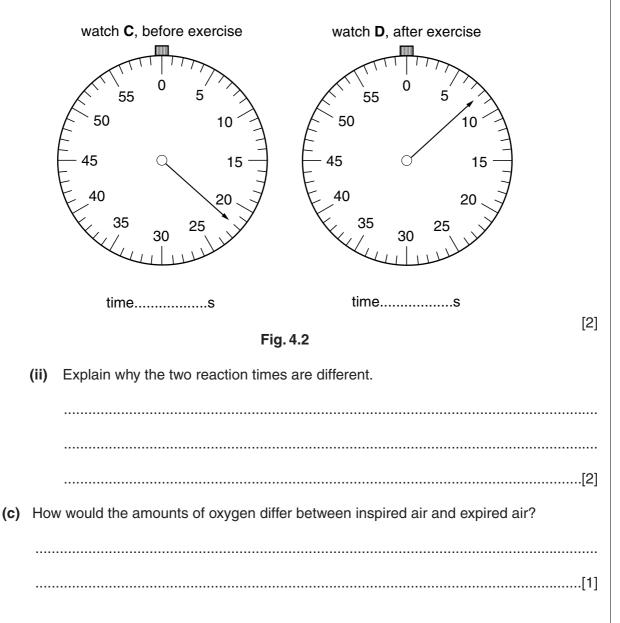



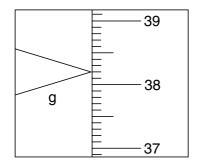
Fig. 4.1

The tubes were arranged so that inspired air bubbled through one tube, and expired air bubbled through the other tube. The student breathed in and out through the mouthpiece.

The student did the experiment twice, once before, and once after exercise. The times taken for a reaction are shown by the stop watches in Fig. 4.2.

(b) (i) Write the readings of the stop watches in the spaces below Fig. 4.2.

5 A student did an experiment to find the energy change when a weighed mass of solid Z dissolved in a measured volume of water in a glass beaker.


The energy change during the reaction was shown by the change in temperature of the beaker and the water.

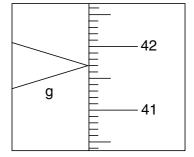
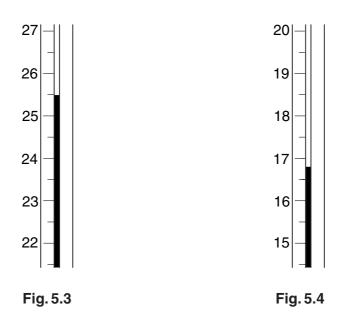

Fig. 5.1 shows the balance reading when the beaker was weighed.

Fig. 5.2 shows the balance reading when the beaker containing solid **Z** was weighed.

Fig. 5.3 shows the temperature of the 25 cm^3 of water.


Fig. 5.4 shows the temperature of the water after solid **Z** had dissolved.

(a) Read the balance and the thermometer scales and then complete Fig. 5.5.

mass of beaker	M ₁ =g
mass of beaker + solid Z	M ₂ =g
mass of solid Z	M ₃ =g
temperature of the 25 cm ³ of water	$T_1 = \dots^{\circ}C$
temperature of the solution of Z in water	$T_2 = \dots^{\circ}C$

		temperature change, $T_2 - T_1 = \dots^{\circ}C$ [1]
(c)	(i)	Convert $\mathbf{M_1}$, the mass of the beaker in grams, into kilograms.
		mass of the beaker in kilograms =kg [1]
	(ii)	Multiply this mass by 670. This gives the heat energy stored by the beaker, H Joules, for each degree Celsius change.
		heat energy stored by the beaker, \mathbf{H} = Joules [1]
(d)		ng your answers to (b) and (c) (ii) , calculate the total heat energy change when solid Z solved in water, using the formula below.
		total heat energy change = $(T_2 - T_1) \times (H + 105)$ Joules
		total heat energy change = Joules [1]
(e)	ls ti	ne dissolving of Z in water exothermic or endothermic? Explain your answer.
		[1]

6 Lemon juice contains citric acid which gives it a sour taste. Citric acid reacts with sodium hydroxide to form the salt sodium citrate. Study the information given in Fig. 6.1 and Fig. 6.2. Use the information to answer the questions which follow.

name of substance	appearance	solubility in water
citric acid	white crystals	soluble
sodium citrate	white crystals	soluble

Fig. 6.1

name of indicator	colour at pH5	colour at pH9
phenolphthalein	colourless	purple

- Fig. 6.2
- (a) Describe how you could make a sample of citric acid crystals from the juice of a lemon.

(b) Describe how you could make a sample of sodium citrate crystals using the citric acid crystals from the experiment in (a) and the indicator named in Fig. 6.2. You may assume that sodium hydroxide solution and the usual laboratory apparatus are available.