| Please check the examination details be | low before ente | ring your candidate inform | nation | |---|--------------------|----------------------------|-------------| | Candidate surname | | Other names | | | | | | | | Centre Number Candidate N | lumber | | | | | | | | | Pearson Edexcel Inter | nation | al GCSE (9- | 1) | | Time 2 hours | Paper
reference | 4CP0/ | 01 | | Computer Science | е | | • | | PAPER 1: Principles of Co | mputer | Science | | | | | | | | | | | | | You must have: | | | Total Marks | | Pseudocode command set (enclosed | l) | | 1 | #### **Instructions** - Use black ink or ball-point pen. - Fill in the boxes at the top of this page with your name, centre number and candidate number. - Answer all questions. - Answer the questions in the spaces provided - there may be more space than you need. #### Information - The total mark for this paper is 80. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - You are not allowed to use a calculator. #### **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - Marks will not be awarded for using product or trade names in answers without giving further explanation. Turn over ▶ ## Answer ALL questions. Write your answers in the spaces provided. Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . | | tii a tross 🔼. | |---|----------------| | Computer systems have both hardware and software components. | | | (a) The central processing unit (CPU) uses the fetch-decode-execute cycle. | | |
(i) State what is meant by the term program instruction . | (1) | | (ii) State what is meant by the term memory address . | (1) | | (b) Identify the component of the CPU that provides temporary data storage. | | | | (1) | | A Address bus | | | ■ B Data bus | | | | | | □ Register | | | (c) The performance of the CPU is affected by the clock speed. | | | (i) Give one benefit of having a higher clock speed. | (1) | | (ii) Give one drawback of having a higher clock speed. | (1) | | (d) | Ide | ntify | which one of these describes a sequential computa | tional mode | I. (1) | |-----|-------|-------|---|--------------|-------------| | | × | A | Program instructions are read one after another fro | m external s | storage | | | × | В | Program instructions are executed by multiple age | nts working | together | | | × | C | Program instructions are executed in parallel by dif | ferent cores | | | | × | D | Program instructions are executed one after another | er | | | (e) | | | am can be written in a high-level or a low-level lang | | (1) | | | (ii) | Stat | e the purpose of an assembler. | | (1) | | | (iii) | | nplete the table by adding one tick (🗸) in each row t
description. | o match | (3) | | | D | escr | iption | Compiler | Interpreter | | | Ti | ransl | ates the program each time it is executed | | | | | Р | rodu | ces permanent object code | | | | | Ti | ransl | ates line by line | | | | | | | | | | (Total for Question 1 = 11 marks) Translates the whole program before it is run been translated Generates a list of errors once the complete program has - 2 Computers use binary to represent and store data. - (a) The denary number 78 is the ASCII code for the character **N**. - (i) Convert the denary number 78 to 8-bit binary. (2) (ii) Identify the number of characters that can be represented using standard ASCII. (1) - 64 - X 128 - X 256 - X **D** 512 - (iii) Explain one reason for using Unicode rather than ASCII to encode languages other than English. (2) (b) Convert the denary number -43 to 8-bit binary using sign and magnitude representation. (2) (c) Complete the table by adding these two 8-bit binary integers. (2) | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | |---|---|---|---|---|---|---|---| | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | | | | | | | | | | - (d) A bitmap image is made up of pixels. - (i) An image has five colours. Complete the table by adding a unique binary pattern for each colour. Each pattern must use the same minimum colour depth. (2) | Colour | Binary pattern | |--------|----------------| | Green | | | Black | | | White | | | Red | | | Blue | | (ii) Another image is 3579 pixels high and 6128 pixels wide. The image is stored with a 32-bit colour depth. The metadata for the image is 732 bytes. Construct an expression to show how the file size, in **megabytes**, is calculated. You do **not** need to do the calculation. (4) (Total for Question 2 = 15 marks) # BLANK PAGE QUESTION 3 BEGINS ON THE NEXT PAGE. - 3 Alyssa is a music producer. - (a) **Figure 1** shows the denary values of five samples of an analogue sound using a sample interval of 0.2 seconds. | Sample number | Denary
value | |---------------|-----------------| | 1 | 1 | | 2 | 10 | | 3 | 12 | | 4 | 5 | | 5 | 3 | Figure 1 - (i) Complete this graph using the sample information from **Figure 1** to show the digital sound wave. - (3) - (ii) Give a suitable label for the X axis. - (1) - (iii) Give a suitable label for the Y axis. (1) | LID | N same and | | Dogavintia | | | |----------|--|----------------------------|----------------------|-----------------------|-----| | (iv | | nusic files is stored at h | | | (4) | |
 | | | | | | | | | | | | (1) | |
(iii | i) Give one possibl
the cloud. | e security issue associ | ated with storing n | nusic files in | | | | | | | | | |
 | | | | | | |
 | | | | | (-/ | |
(ii) |) Explain one bend | efit to Alyssa of storing | g her music files in | the cloud. | (2) | |
 | | | | | | | | this purpose. | | | | (1) | | | Give one disadva | antage of using a lossl | | | | | (i) | She compresses | the files before she up | oloads them using a | a lossless algorithm. | | | (b) Al | yssa uploads musi | c files to her cloud sto | rage. | | | | | | | | | | | URL component | Description | |--------------------|-------------| | https | | | www.cloudisfab.com | | | re12 | | | ru2.mp3 | | (Total for Question 3 = 13 marks) - 4 Reba likes writing programs. - (a) She is writing a guessing game. She needs a flowchart to show the logic of the game. (i) These are the components needed to draw the flowchart. Draw the flowchart for the algorithm in the box on the next page. Use each component once. Do not add any additional components. Use as many arrows and yes/no labels as you need. (5) Draw your flowchart here. (ii) Identify an alternative method for writing the algorithm. (1) - A Simulation - **B** Cipher - C Program code - **D** Truth table - (b) Reba wants to develop a program that will convert a temperature in Fahrenheit to Celsius. Here are four steps in the algorithm. The steps are not in the correct order. | Step | |------| |------| - A Change the temperature to Celsius - B Get the temperature in Fahrenheit - C Show the temperature in Celsius - D Set the temperature to 0 - (i) Give the letter of the step that initialises a variable. (1) (ii) Give the letter of the step that inputs a value. (1) ### **BLANK PAGE** QUESTION 4 (c) BEGINS ON THE NEXT PAGE. (c) **Figure 2** shows the pseudocode for an early version of an algorithm that Reba has written for another game. #### The algorithm: - asks the user to input a colour or input –1 to end the game - awards 1 point for red - awards 8 points for orange - generates the score for the game - displays the results of the game. ``` 1 SET Colour TO "" 2 SET Score TO 0 SET RedPoints TO 0 SET OrangePoints TO 0 SET NumOranges TO 0 6 WHILE Colour <> "-1" DO 7 8 RECEIVE Colour FROM (STRING) KEYBOARD IF Colour = "red" THEN 9 10 SET RedPoints TO RedPoints + 1 11 ELSE 12 IF Colour = "orange" THEN 13 SET OrangePoints TO OrangePoints + 8 14 SET NumOranges TO NumOranges + 1 15 END IF 16 END IF 17 END WHILE 18 19 SET Score TO RedPoints + OrangePoints 20 21 SEND ("Score: "& Score) TO DISPLAY 22 SEND ("Number of reds: "& RedPoints) TO DISPLAY 23 SEND ("Number of oranges: "& OrangePoints) TO DISPLAY ``` Figure 2 Reba inputs: red, orange, red, red, orange, -1 The outputs are not as she expects. (i) Complete the trace table to show the outputs. (4) | Colour | Score | RedPoints | OrangePoints | NumOranges | Outputs | |--------|-------|-----------|--------------|------------|---------| | | 0 | 0 | 0 | 0 | | | red | | | | | | | orange | | | | | | | red | | | | | | | red | | | | | | | orange | | | | | | | -1 | (ii) Give the line number of the pseudocode that contains the error. (1) (iii) Write a replacement line of pseudocode to correct the error. (1) (Total for Question 4 = 14 marks) | 5 Viza Health Centre is located in the North East of Eng | land. | |--|-------| |--|-------| (a) The health centre uses artificial intelligence to provide a symptom-checking service for its patients. Patients log on to the website and input their symptoms. (i) Describe how artificial intelligence could identify what is wrong with them. (2) (ii) Give **one** reason why a patient may not want to use this online service. (1) (b) The health centre has clinics in two buildings: Cleveland and Stockton. The network server is in the Cleveland building. (i) Name the type of network used to access the server from within the Cleveland building. (1) (ii) Name the type of network used to access the server from the Stockton building. (1) | lc | den | ntify | the description of eavesdropping. | | |------|----------------------|--------------------|---|-----| | | | , | | (1) | | × | | A | Tricking people into giving information by sending emails pretending to be from someone in authority | 0 | | × | | В | Spying on someone using a computer | | | × | | C | Intercepting information as it is transmitted over a network | | | × | | D | Redirecting a user from a genuine website to a fake one | | | d) D | ОС | tors | use laptops when they visit patients in their homes. | | | (i |) - | The | laptops have solid state drives. | | | | | • | ain one reason why a solid state drive is better than a magnetic hard drive | ve | | | 1 | for t | he laptops. | (2) | (i | i) I | Desc | cribe how data is stored on a solid state drive. | | | (i | i) l | Desc | cribe how data is stored on a solid state drive. | (2) | | (i | i) I | Desc | cribe how data is stored on a solid state drive. | (2) | | (i | i) l | Desc | cribe how data is stored on a solid state drive. | (2) | | (i | i) I | Desc | cribe how data is stored on a solid state drive. | (2) | | (i | i) I | Desc | cribe how data is stored on a solid state drive. | (2) | | | | | | (2) | | | | | cribe how data is stored on a solid state drive. | (2) | | |
ii) ⁻ | The | laptops have two types of memory. nplete the table by adding one tick (✓) to match each description to the | (2) | | |
ii) ⁻ | The | laptops have two types of memory. | (2) | | (i | ii) ⁻ | The
Com
type | laptops have two types of memory. plete the table by adding one tick (✓) to match each description to the e of memory used. | | | (i | ii) - (| The
Com
type | laptops have two types of memory. pplete the table by adding one tick (✓) to match each description to the e of memory used. | (2) | (Total for Question 5 = 12 marks) - 6 Santiago manages a computer network for a small business. - (a) Networks are based on a topology. Figure 3 shows a network topology. Figure 3 (i) Explain one benefit of this network topology. (2) (ii) The internet is the world's largest mesh network. Explain **one** reason why a mesh topology is essential for the internet. (2) | (b) Continue continue and big locators coldistate and lines by the in- | | |--|-----| | (b) Santiago works on his laptop whilst travelling by train. | | | There is a free Wi-Fi connection on the train, but Santiago doesn't use it. | | | He prefers to set up a network between his smartphone and his laptop to conn to the internet. | ect | | (i) Name this type of network. | (1) | | (ii) Explain one advantage for Santiago of using the network he has set up to connect to the internet, rather than the free Wi-Fi connection. | (2) | | | | | | | | (c) Santiago uses audit trails to help protect the network. | | | (i) State what is meant by an audit trail . | (1) | | | | | (ii) Give one way the data from audit trails can be used to help keep the
network secure. | | | | (1) | | | | | | | | | | | | TOTAL FOR PAPER = 80 MAI | RKS | |---|-------------------------------|------| | | (Total for Question 6 = 15 ma | rks) | | | | | |
 | | | |
 |
 | | | | | | | | | | | | | | | | | | (6) | | review of network and user policies. | | | | ethical hackingcommercial analysis tools | | | | You should consider: | | | | Discuss the methods he can use. | | | | | | | (d) Santiago wants to find and fix network vulnerabilities before the reputation of the company suffers. # Pearson Edexcel International GCSE (9-1) Paper reference 4CP0/01 # **Computer Science** **Component 1** **Pseudocode command set** ## **Resource Booklet** Do not return this Booklet with the question paper. Turn over ▶ #### Pseudocode command set Questions in the written examination that involve code will use this pseudocode for clarity and consistency. However, students may answer questions using any valid method. #### **Data types** **INTEGER** **REAL** **BOOLEAN** **CHARACTER** #### **Type coercion** Type coercion is automatic if indicated by context. For example 3 + 8.25 = 11.25 (integer + real = real) Mixed mode arithmetic is coerced like this: | | INTEGER | REAL | |---------|---------|------| | INTEGER | INTEGER | REAL | | REAL | REAL | REAL | Coercion can be made explicit. For example, RECEIVE age FROM (INTEGER) KEYBOARD assumes that the input from the keyboard is interpreted as an INTEGER, not a STRING. #### **Constants** The value of constants can only ever be set once. They are identified by the keyword CONST. Two examples of using a constant are shown. **CONST REAL PI** **SET PI TO 3.14159** SET circumference TO radius * PI * 2 #### **Data structures** **ARRAY** **STRING** Indices start at zero (0) for all data structures. All data structures have an append operator, indicated by &. Using & with a STRING and a non-STRING will coerce to STRING. For example, SEND 'Fred' & age TO DISPLAY, will display a single STRING of 'Fred18'. #### **Identifiers** Identifiers are sequences of letters, digits and '_', starting with a letter, for example: MyValue, myValue, My_Value, Counter2 #### **Functions** LENGTH() For data structures consisting of an array or string. RANDOM(n) This generates a random number from 0 to n. #### **Comments** Comments are indicated by the # symbol, followed by any text. A comment can be on a line by itself or at the end of a line. #### **Devices** Use of KEYBOARD and DISPLAY are suitable for input and output. Additional devices may be required, but their function will be obvious from the context. For example, CARD_READER and MOTOR are two such devices. #### **Notes** In the following pseudocode, the < > indicates where expressions or values need to be supplied. The < > symbols are not part of the pseudocode. P72538A | Variables and arrays | | | |---|--|--| | Syntax | Explanation of syntax | Example | | SET Variable TO <value></value> | Assigns a value to a variable. | SET Counter TO 0
SET MyString TO 'Hello world' | | SET Variable TO <expression></expression> | Computes the value of an expression and assigns to a variable. | SET Sum TO Score + 10
SET Size to LENGTH(Word) | | SET Array[index] TO <value></value> | Assigns a value to an element of a one-dimensional array. | SET ArrayClass[1] TO 'Ann'
SET ArrayMarks[3]TO 56 | | SET Array TO [<value>,]</value> | Initialises a one-dimensional array with a set of values. | SET ArrayValues TO [1, 2, 3, 4, 5] | | SET Array [RowIndex,
ColumnIndex] TO <value></value> | Assigns a value to an element of a two dimensional array. | SET ArrayClassMarks[2,4] TO 92 | | Selection | | | |---|--|--| | Syntax | Explanation of syntax | Example | | IF <expression> THEN
<command/>
END IF</expression> | If <expression> is true then command is executed.</expression> | IF Answer = 10 THEN SET Score TO Score + 1 END IF | | IF <expression> THEN</expression> | If <expression> is true then first <command/> is executed, otherwise second <command/> is executed.</expression> | IF Answer = 'correct' THEN SEND 'Well done' TO DISPLAY ELSE SEND 'Try again' TO DISPLAY END IF | | Repetition | | | |--|--|---| | Syntax | Explanation of syntax | Example | | WHILE <condition> DO
<command/>
END WHILE</condition> | Pre-conditioned loop. Executes <command/> whilst <condition> is true.</condition> | WHILE Flag = 0 DO
SEND 'All well' TO DISPLAY
END WHILE | | REPEAT <command/> UNTIL <expression></expression> | Post-conditioned loop. Executes <command/> until <condition> is true. The loop must execute at least once.</condition> | REPEAT SET Go TO Go + 1 UNTIL Go = 10 | | REPEAT <expression> TIMES <command/> END REPEAT</expression> | Count controlled loop. The number of times < command> is executed is determined by the expression. | REPEAT 100-Number TIMES
SEND '*' TO DISPLAY
END REPEAT | | FOR <id> FROM <expression> TO <expression> DO <command/> END FOR</expression></expression></id> | Count controlled loop. Executes <command/> a fixed number of times. | FOR Index FROM 1 TO 10 DO
SEND ArrayNumbers[Index]
TO DISPLAY
END FOR | | FOR <id> FROM <expression> TO <expression> STEP <expression> DO <command/> END FOR</expression></expression></expression></id> | Count controlled loop using a step. | FOR Index FROM 1 TO 500 STEP
25 DO
SEND Index TO DISPLAY
END FOR | | FOR EACH <id> FROM <expression> DO <command/> END FOREACH</expression></id> | Count controlled loop. Executes for each element of an array. | SET WordsArray TO ['The', 'Sky', 'is', 'grey'] SET Sentence to " FOR EACH Word FROM WordsUArray DO SET Sentence TO Sentence & Word & '' END FOREACH | Turn over ▶ | Input/output | | | |---|--------------------------------|---| | Syntax | Explanation of syntax | Example | | SEND <expression> TO DISPLAY</expression> | Sends output to the screen. | SEND 'Have a good day.' TO
DISPLAY | | RECEIVE <identifier> FROM (type) <device></device></identifier> | Reads input of specified type. | RECEIVE Name FROM (STRING) KEYBOARD RECEIVE LengthOfJourney FROM (INTEGER) CARD_READER RECEIVE YesNo FROM (CHARACTER) CARD_READER | | File handling | | | |---------------------------------------|--|--| | Syntax | Explanation of syntax | Example | | READ <file> <record></record></file> | Reads in a record from a <file> and assigns to a <variable>. Each READ statement reads a record from the file.</variable></file> | READ MyFile.doc Record | | WRITE <file> <record></record></file> | Writes a record to a file. Each WRITE statement writes a record to the file. | WRITE MyFile.doc Answer1,
Answer2, 'xyz 01' | | Subprograms | | | |---|----------------------------------|---| | Syntax | Explanation of syntax | Example | | PROCEDURE <id> (<parameter>,) BEGIN PROCEDURE <command/> END PROCEDURE</parameter></id> | Defines a procedure. | PROCEDURE CalculateAverage
(Mark1, Mark2, Mark3)
BEGIN PROCEDURE
SET Avg to (Mark1 + Mark2 +
Mark3)/3
END PROCEDURE | | FUNCTION <id> (<parameter>,) BEGIN FUNCTION <command/> RETURN <expression> END FUNCTION</expression></parameter></id> | Defines a function. | FUNCTION AddMarks (Mark1,
Mark2, Mark3)
BEGIN FUNCTION
SET Total to (Mark1 + Mark2 +
Mark3)/3
RETURN Total
END FUNCTION | | <id> (<parameter>,)</parameter></id> | Calls a procedure or a function. | Add (FirstMark, SecondMark) | | Arithmetic operators | | |----------------------|------------------| | Symbol | Description | | + | Add | | - | Subtract | | / | Divide | | * | Multiply | | ٨ | Exponent | | MOD | Modulo | | DIV | Integer division | | Relational operators | | |----------------------|--------------------------| | Symbol | Description | | = | equal to | | <> | not equal to | | > | greater than | | >= | greater than or equal to | | < | less than | | <= | less than or equal to | | Logical operators | | |-------------------|---| | Symbol | Description | | AND | Returns true if both conditions are true. | | OR | Returns true if any of the conditions are true. | | NOT | Reverses the outcome of the expression; true becomes false, false becomes true. |