

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER		CANI NUM	DIDATE BER		

COMBINED SCIENCE

0653/33

Paper 3 (Extended)

May/June 2013

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 26 printed pages and 2 blank pages.

(a) Table 1.1 shows the numbers of protons, neutrons and electrons in four atoms, A, B, C and D.

For Examiner's Use

Table 1.1

atom	protons	neutrons	electrons
Α	2	2	2
В	3	4	3
С	1	0	1
D	4	5	4

(i)	Explain which one of the atoms, ${\bf A}, {\bf B}, {\bf C}$ or ${\bf D},$ has a nucleon number (mass number) of four.
	atom
	explanation
	[1]
(ii)	Explain why all atoms do not have an overall electrical charge.
	[2]

(b) Fig. 1.1 shows containers of hydrogen and helium.

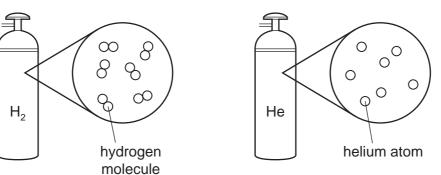


Fig. 1.1

(i) Describe, in terms of electrons, how a chemical bond forms between two hydrogen atoms.

You may draw a diagram of a hydrogen molecule if it helps you to answer this question.

		[2]
(ii)	Explain why helium exists as single atoms and not as molecules.	
		[1]

(c) Hydrogen is often included in the reactivity series of metals.

Use the idea of reactivity to explain the observations shown in Fig. 1.2.

For Examiner's Use

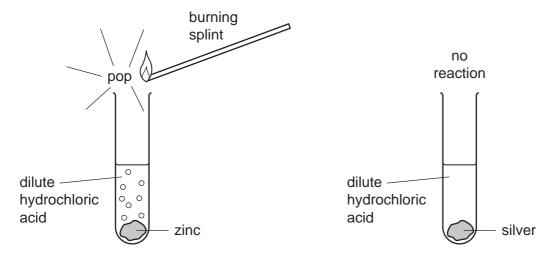


Fig. 1.2

		[3]

2 (a) A fishing boat uses echo sounding to detect a shoal of fish.

For Examiner's Use

This is shown in Fig. 2.1.

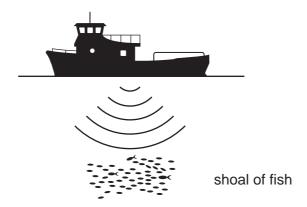


Fig. 2.1

Short pulses of sound are sent out from the boat. The echo from the shoal of fish is detected by a receiver on the boat 0.2 seconds later.

Sound waves travel through water at a speed of 1600 m/s.

(i) Calculate the distance of the shoal of fish below the boat.

State the formula that you use and show your working.

formula

working

[2

(ii) The sound waves have a wavelength of 0.25 m.

Calculate the frequency of the waves.

State the formula that you use and show your working.

formula

working

[2]

(b) (i)	Water waves are a renewable energy resource.
	Outline two advantages of using renewable energy resources.
	1
	2
	[2]
(ii)	Fig. 2.2 shows how water waves can be used to produce electricity.
	water movement causes air to move in and out of the air chamber waves air chamber waves make water rise and fall in air chamber
	Fig. 2.2
	Using the information in Fig. 2.2, describe two of the energy transfers that are involved in changing the kinetic energy of the waves into electrical energy.
	[2]

(c) Fig. 2.3 shows an iceberg floating in the sea.

For Examiner's Use

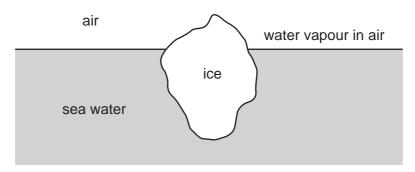


Fig. 2.3

(i)	Which material named on Fig. 2.3 best fits the statement below? "The particles are able to move, are randomly arranged and are closely packed."
	[1]
(ii)	Name the process by which water molecules in the sea become water molecules in the air.
	ra

3 The addition of a harmful substance to the environment is called pollution. Three examples of pollution caused by human activities are

For Examiner's Use

- acid rain,
- fertilisers entering rivers and lakes,
- the release of too much carbon dioxide into the atmosphere.

(a)	Describe how acid rain is caused.
	[2]
(b)	Explain what happens in a lake after large quantities of fertilisers are washed into it.
	[3]
(c)	Explain how cutting down forests can result in an increase in the carbon dioxide concentration in the atmosphere.
	[2]

Please turn over for Question 4.

4 Petroleum (crude oil) and rock salt occur naturally in the Earth's crust.

For Examiner's Use

(a) Petroleum is a mixture that contains thousands of different compounds. Many of these compounds are alkanes.

Draw the structure of the alkane molecule that contains eight hydrogen atoms. Use short lines to represent covalent bonds.

[2]

(b) When petroleum is refined, it is separated into simpler mixtures.

Fig. 4.1 shows a simplified diagram of apparatus that is used to refine petroleum.

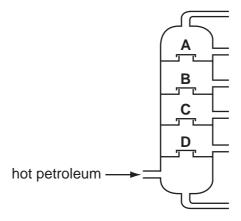


Fig. 4.1

Explain, in terms of intermolecular forces and the size of molecules, why the average boiling point of the fraction at **B** differs from the average boiling point of the fraction at **C**.

(c)		Rock salt contains mainly sodium chloride which is a compound of the alkali metal, sodium, and the halogen, chlorine.		
	(i) Explain why the uncombined elements sodium and chlorine are not found in Earth's crust.			
		[1]		
	(ii)	Describe the changes in electron configuration when sodium atoms (2,8,1) react with chlorine atoms (2,8,7) to form sodium chloride.		
		[2]		

5 Milk is a liquid produced by cows, goats and other mammals, on which they feed their young.

For Examiner's Use

(a) Table 5.1 shows the mass of some of the substances in 100 g samples of milk from three mammals.

Table 5.1

substance	cow's milk	goat's milk	water-buffalo's milk
protein/g	3.2	3.1	4.5
fat/g	3.9	3.5	8.0
carbohydrate/g	4.8	4.4	4.9
calcium/mg	120	100	195

(i)	Which substance shown in Table 5.1 is present in the samples of milk in the smallest quantity?
	[1]
(ii)	Suggest which substance, not shown in Table 5.1, is present in the samples of milk in the largest quantity.
	[1]
(iii)	Explain one way in which drinking water-buffalo's milk might be better for a person's health than drinking goat's milk.
	ICI
	[2]
(iv)	State and explain which substance in Table 5.1 does not need to be digested in the human alimentary canal.
	[2]

- (b) Milk can be used for making yoghurt.
 - Bacteria are added to the milk. The milk is kept at a temperature of 40°C.
 - The bacteria convert lactose in the milk to lactic acid.
 - When the pH has reached about 4.5, the yoghurt is moved to a refrigerator at a temperature of 3 °C.

(i)	Explain why the milk is kept at a temperature of 40 °C after the bacteria have be added to it.	een
		[2]
(ii)	Suggest why the yoghurt is kept in a refrigerator at a temperature of 3 °C.	
		[1]
(iii)	Milk has a pH of about 6.5. Explain why the pH of milk changes during manufacture of yoghurt.	the

6 (a) In a store, two workers are lifting 5 kg bags of flour onto the shelves. There are five shelves, 0.4 m apart. The lowest shelf is 0.4 m from the floor.

For Examiner's Use

Fig. 6.1 shows the two workers.

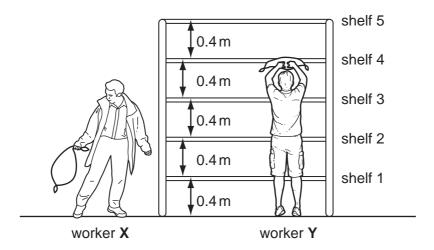


Fig. 6.1

(i) Worker **X** lifts three bags from the floor to shelf 2. Worker **Y** lifts one bag from the floor to shelf 5.

Worker X says that he has done more work than worker Y.

Use calculations of the work done to explain whether or not he is correct.

State the formula that you use.

formula

	[2]
(ii)	Each worker lifts one bag from the floor to shelf 2. Worker ${\bf X}$ does this more quickly than worker ${\bf Y}$.
	Which worker exerted the higher power during their lift?
	Explain your answer.
	[1]

(iii)	Each 5 kg bag of flour has a volume of 5500 cm ³ .							
	Calculate the average density of the bag of flour.							
	State your answer in g/cm ³ .							
	State the formula that you use and show your working.							
	formula							
	working							
		g/cm ³	[2]					

© UCLES 2013 0653/33/M/J/13 **[Turn over**

(b) Three boys, A, B and C, walk together from their school to a store. They stay at the store for a few minutes and then return to school.

For Examiner's Use

ſΩI

When they leave the store,

- one boy walks back to school at a steady pace,
- one boy walks back to school at a slower steady pace,
- one boy slows down gradually as he walks back to school.

The graph in Fig. 6.2 shows how their speeds vary with time during the whole journey to the store and back again.

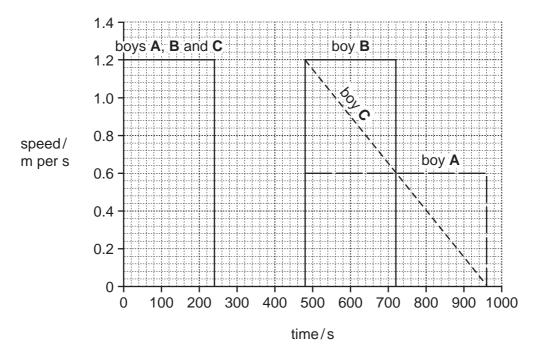


Fig. 6.2

(i) Calculate the distance of the store from the school.Show your working.

		[4]
(ii)	For how many seconds do the boys stay in the store?	
	s	[1]
(iii)	Which boy slowed down on his way back to school?	
	State a reason for your answer.	
	boy because	
		[1]

7 (a) Fig. 7.1 shows apparatus a student used to investigate the reaction between a white powder and dilute hydrochloric acid.

For Examiner's Use

The student predicted that a gas would be given off in her experiment and chose to test the gas using limewater.

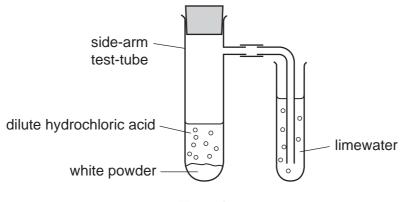


Fig. 7.1

State the gas that the student predicted would be given off.

Explain your answer.

name of gas

explanation

[2]

(b) The student investigated the temperature change when sodium hydrogencarbonate was added to excess dilute hydrochloric acid.

Examiner's

Fig. 7.2 shows the apparatus she used.

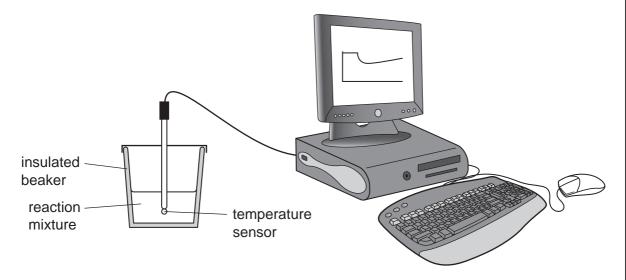


Fig. 7.2

Temperature measurements were displayed on the computer screen as a graph of temperature against time.

This graph is shown in Fig. 7.3.

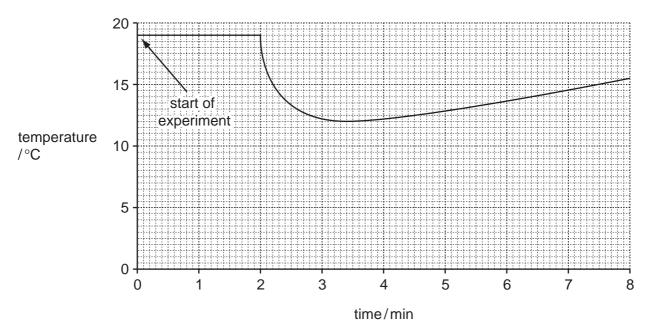


Fig. 7.3

(i) On the graph, mark with an X the point where sodium hydrogencarbonate was added to the dilute hydrochloric acid. [1]

© UCLES 2013 0653/33/M/J/13

For Use

	(ii)	Calculate the temperature change shown in Fig. 7.3 that occurred during the reaction.
		[2]
((iii)	Use the results shown in Fig. 7.3 to explain, in terms of chemical energy and heat energy, the energy transformation that occurred during the reaction.
		[2]
(c)		lium hydrogencarbonate, NaHCO ₃ , is a solid compound made of sodium ions and rogencarbonate ions. Sodium is a metal in Group 1 of the Periodic Table.
	Dec	duce the formula and electrical charge of a hydrogencarbonate ion.
	Exp	olain your answer.
		[3]

8 Fig. 8.1 shows the human gas exchange system.

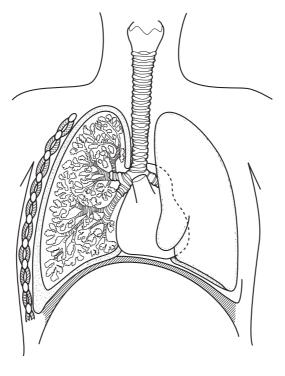


Fig. 8.1

(a) Use label lines to label each of these structures on Fig. 8.1.

trachea

bronchus [2]

(b) Gas exchange takes place across the surface of the alveoli in the lungs.

List two features of alveoli that help gas exchange to take place quickly.

1	

2

(c) The gas exchange system is protected from pathogens and harmful substances by a tissue, containing goblet cells and ciliated cells, that lines the nose, trachea and bronchi.

For Examiner's Use

Fig. 8.2 shows part of this tissue inside the nose.

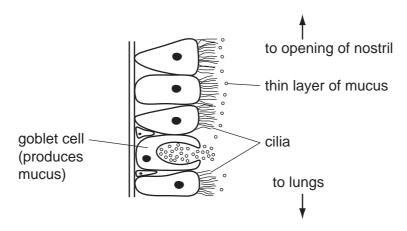


Fig. 8.2

the lungs.	IIILO
	[2]
	[-]

(d) An experiment was carried out to find out how passive smoking affects the activity of the goblet cells and cilia.

For Examiner's Use

Six people sat in a closed room. On day **1**, they breathed normal, clean air. On day **2**, they breathed air containing cigarette smoke.

After one hour, a substance was sprayed into each person's nose. After 40 minutes, the researchers measured the percentage of the substance that remained in each person's nose. This was done on both days.

The faster the cilia and goblet cells were working, the faster the substance was removed from the nose.

Table 8.1 shows the results.

Table 8.1

	percentage of substance remaining after 40 minutes						
person	day 1 after breathing clean air	day 2 after breathing air containing cigarette smoke					
1	65	26					
2	84	49					
3	67	96					
4	23	51					
5	40	91					
6	78	24					

(ii)	Which three persons' results showed that breathing air containing cigarette smoke slowed down the rate at which their cilia and goblet cells worked?
	[1]
(ii)	Suggest how exposure to cigarette smoke could affect the health of these three people.
	[3]

Please turn over for Question 9.

9 (a) A student investigated how a change in potential difference across a lamp affected the current flowing through the lamp.

For Examiner's Use

She used wires to connect the components shown in Fig. 9.1 to make a circuit.

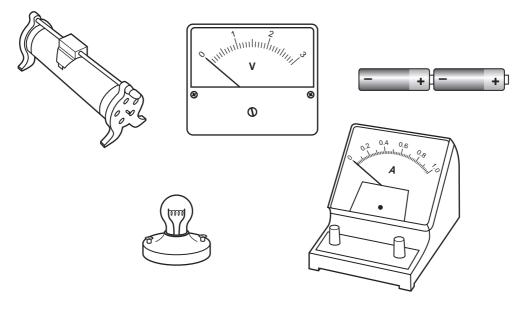


Fig. 9.1

(i) Using the correct circuit symbols, draw a diagram to show the circuit she used.

[3]

	(ii)	The student measured the current passing through a wire when a potential difference was applied across it.
		Calculate the resistance of the wire when a potential difference of 0.3 V is applied and the current measured is 0.5 A.
		State the formula that you use and show your working.
		formula
		working
		[2]
(b)	the	ricity is often transmitted through overhead power cables hung from pylons. If e cables are put up on a hot summer day, they are hung loosely from the pylons as in in Fig. 9.2.

shown in Fig. 9.2.

Fig. 9.2

Suggest why the cables are hung loosely.	
	[2]

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Ne on 10	40 Ar Argon	84 Krypton 36	131 Xe Xenon	Rn Radon		Lu Lutetium 71	Lr Lawrencium 103
	II/		19 F Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127	At Astatine 85		173 Yb Ytterbium 70	No Nobelium 102
	IN		16 Oxygen 8	32 S Sulfur 16	79 Se Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm Thulium	Md Mendelevium 101
	^		14 N itrogen 7	31 Phosphorus 15	75 As Arsenic	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium
	//		12 Carbon	28 Si Silicon	73 Ge Germanium	119 Sn Tin	207 Pb Lead 82		165 Ho Holmium 67	Es Einsteinium
	Ш		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 n Indium	204 T 1 Thallium		162 Dy Dysprosium 66	Cf Californium 98
					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium	Bk Berkeium 97
					64 Cu Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm Curium 96
Group					59 Nickel	106 Pd Palladium	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
Ğ					59 Cobalt	103 Rhodium 45	192		Samarium 62	Pu Plutonium 94
		1 Hydrogen			56 Fe Iron	Ruthenium	190 Os Osmium 76		Pm Promethium 61	Np Neptunium 93
					Mn Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Neodymium 60	238 U Uranium 92
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91
					51 V Vanadium 23	Niobium Niobium	181		140 Ce Cerium	232 Th Thorium
					48 T Titanium	2r Ziroonium 40	178 Ha tnium		1	nic mass Ibol nic) number
					45 Scandium 21	89 ×	139 La Lanthanum 57 *	Actinium t	d series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		9 Be Beryllium	24 Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series	¤ × ä
	_		7 Li Lithium	23 Na Sodium	39 K Potassium	Rubidium	133 Cs Caesium 55	Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.