

	UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIO International General Certificate of Secondary Education	MANN. TITEMER BOOTS.COM.
CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	
COMBINED S	CIENCE	0653/22
Paper 2 (Core)		May/June 2013

Paper 2 (Core)

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electrical calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units. A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 20 printed pages.

[Turn over

1 hour 15 minutes

1 (a) Fig. 1.1 shows some of the elements in Group 1 of the Periodic Table.

Fig. 1.1

- (i) Name the gas which is given off when the metals in Fig. 1.1 react with water.
 - [1]

For Examiner's Use

(ii) Describe how the rate of reaction between water and the metals in Fig. 1.1 changes as you go down the group.

[1]

(b) Fig. 1.2 shows some of the elements in Group 7 of the Periodic Table.

Fig. 1.2

(i) Describe how the melting point of the elements in Fig. 1.2 changes as you go down the group.

(ii) A solution of potassium bromide is colourless and a solution of chlorine is almost colourless.

Describe and explain briefly what would be seen when these solutions are mixed.

what would be seen

explanation

(c) Phosphorus is a non-metallic, solid element.

One form of phosphorus is white, has the chemical formula P_4 and has to be kept under water.

Fig. 1.3 shows a bottle containing phosphorus.

Fig. 1.3

(i) Suggest why white phosphorus has to be stored under water.

(ii) Explain the meaning of the chemical formula P₄.
[2]

[Turn over

					Exam
	t	oy elephant		- table	Us
			string	ball	
		F	Fig. 2.1		
(i)	Name the main	force that oppos	ses the motion of the toy elep	hant.	
				[1]
(ii)	State the unit u	sed to measure f	forces.		
				[1]
(iii)	Choose words word once, mor	from the list belore than once or n	ow to complete the sentence ot at all.	es. You may use eac	ch
	chemical	electrical	gravitational potential	kinetic	
	ligh	t sour	nd ti	hermal	
	The useful ener	rgy transfer for th	ne toy is	energy	
	The useful ener	rgy transfer for th	ne toy is energy.	energy	
	The useful ener to The energy was	rgy transfer for th sted by the toy is	ne toy is energy.	energy energy.	[2]
(iv)	The useful ener to The energy was The toy elephan	rgy transfer for th sted by the toy is nt travels 1.2 me	ne toy is energy. tres in 3 seconds.	energy	[2]
(iv)	The useful ener to The energy was The toy elephan Calculate the ar	rgy transfer for th sted by the toy is nt travels 1.2 me verage speed of	ne toy isenergy. energy. tres in 3 seconds. the elephant.	energy	[2]
(iv)	The useful ener to The energy was The toy elephan Calculate the av State the formu	rgy transfer for th sted by the toy is nt travels 1.2 me verage speed of la that you use a	ne toy isenergy. tres in 3 seconds. the elephant. and show your working.	energy	[2]
(iv)	The useful ener to The energy was The toy elephan Calculate the ar State the formula	rgy transfer for th sted by the toy is nt travels 1.2 me verage speed of la that you use a	ne toy is energy. tres in 3 seconds. the elephant. and show your working.	energy	[2]
(iv)	The useful ener to The energy was The toy elephan Calculate the ar State the formula formula working	rgy transfer for th sted by the toy is nt travels 1.2 me verage speed of la that you use a	ne toy isenergy. tres in 3 seconds. the elephant. and show your working.	energy	[2]
(iv)	The useful ener to The energy was The toy elephan Calculate the ar State the formula formula working	rgy transfer for th sted by the toy is nt travels 1.2 me verage speed of la that you use a	ne toy isenergy. tres in 3 seconds. the elephant. and show your working.	energy	[2]
(iv)	The useful ener to The energy was The toy elephan Calculate the ar State the formula formula working	rgy transfer for th sted by the toy is nt travels 1.2 me verage speed of la that you use a	energy. tres in 3 seconds. the elephant. and show your working.	energy	[2]

(b) An elephant of mass 5000 kg exerts a constant force to push a tree trunk along at a steady speed of 1.5 m/s.

For Examiner's Use

State the **two** quantities that would need to be measured to calculate the work done by the elephant.

and)	ι۷.	L

- (c) An elephant can communicate with other elephants using infrasound. This is a very low frequency vibration which it is usually impossible for a human to hear.
 - (i) Suggest a possible frequency for this vibration and explain why you chose your answer.

	frequency	Hz
	explanation	
		[2]
(ii)	State the meaning of the term frequency.	
		[1]

3 (a) Four sets of pea seeds were placed in Petri dishes containing either damp soil or damp filter paper. They were left in different conditions, shown in Table 3.1.

set	conditions			
Α	damp soil	cold	dark	
В	damp filter paper	warm	light	
С	damp filter paper	warm	dark	
D	damp soil	cold	light	

Predict which sets of seeds will germinate.

Explain your answer.

prediction _______explanation ______[3]

(b) A pea seed was planted in a pot. When the seed had grown into a young plant, the pot was placed on its side in a room where light was coming from all sides.

Fig. 3.1 shows the young pea plant three days after the pot had been placed on its side.

Fig. 3.1

(i) Which two terms describe the response of the plant shown in Fig. 3.1?

Circle the correct answers.

geotro	pism	photosynthe	sis	phototropism	
	sensitivi	ty	transpirat	lion	[2]

(ii) Suggest how this response will help the plant to reproduce sexually when it has grown to maturity.
 [2]

4 Fig. 4.1 shows a microwave oven.

Fig. 4.1

- (a) Microwaves cook food by transferring energy to the food.
 - (i) Choose words from the list to complete the sentences below. You may use each word once, more than once or not at all.

chemical	conduction	convection
potential	radiation	thermal

Microwaves are absorbed by the outer layers of food.

The microwave energy is transferred to water and fat molecules in these layers,

increasing the ______ energy of these layers. energy is mostly transferred to the

centre of solid food by _____. [2]

- (ii) State **one** use for microwaves other than cooking.
 - [1]
- (b) Water can be heated in a microwave oven. The microwave oven is made of solids. The water is a liquid.

Complete Fig. 4.2 to show the arrangement of particles in a solid. The diagram for a liquid has been done for you.

liquid

solid

[2]

(a) (i) Explain why hydrogen and carbon are described as elements, but hydrocarbons 5 such as methane and ethane are described as compounds. [2] (ii) Name the fossil fuel found in the Earth that is the main source of methane. [1] (iii) Name **one** type of fossil fuel that is a solid. [1] (iv) Methane is used as a fuel because it reacts very quickly with oxygen, releasing heat. Name the two compounds that are formed when methane undergoes complete combustion. 1 [2] 2 (b) Magnesium metal also reacts quickly with oxygen, releasing heat. (i) Name the compound which is formed when magnesium reacts with oxygen.[1]

For

Examiner's Use (ii) Fig. 5.1 shows diagrams of a magnesium atom and an oxygen atom.

When magnesium reacts with oxygen, the atoms shown in Fig. 5.1 first change into electrically charged atoms known as ions.

Describe what happens when these atoms change into ions.

magnesium		•••
		•••
oxygen		
	[2	2]

6 Fig. 6.1 shows a food chain. The arrows show how energy flows from one organism to another, along the chain.

		grass		sheep			man	
				Fig. 6.1				
(a)	Ene	ergy enters the	food chain	as sunlight. Pl	lant lea	ves use this	energy to make fo	od.
	(i)	Name the sub	ostance in th	e leaves of a	plant th	at absorbs	this energy.	
								[1]
	(ii)	Name the two	o raw materi	als that the pl	ant use	s to make f	ood.	
		1			2			[2]
	(iii)	Name the gas	s released fr	om plant leav	es durir	ng this proc	ess.	
								[1]
(h)	۸ al	haan is a barb	ivere					
(u)		ine the term b						
	Dei		erbivore.					
								[2]
(c)	Mea	at from the she	ep contains	protein.				
	Des	scribe the impo	ortance of pr	otein in the die	et.			
								[2]

(d)	The he l	e cells in the man's body use respiration to release useful energy from nutrients that has absorbed.	For Examiner's Use
	(i)	Tick the processes in the list below that use energy.	
		the diffusion of oxygen from the lungs into the blood	
		the passage of nerve impulses along a nerve cell	
		muscle contraction	
		protein synthesis [1]	
	(ii)	A person living in a very cold climate generally needs to eat more than a person living in a hot climate.	
		Explain why.	
		[2]	

(c) A ray of light from the torch is reflected by a mirror. This is shown in Fig. 7.1.

Fig. 7.1

Angle **a** has a value of 45°.

Name angle **b** and write down its value.

name

value _____°

[2]

8 (a) A student added a solution of the same dilute acid to each of the test-tubes P to S shown in Fig. 8.1. Examiner's

Fig. 8.1

Complete Table 8.1 by matching the test-tubes, P, Q, R and S, with the observations which are made when the dilute acid reacts with the contents.

One of the observations applies to more than one of the test-tubes. You may use each letter once, more than once or not at all.

Table	8.	1
-------	----	---

observations	test-tube(s)
Hydrogen gas is given off.	
A blue solution is formed.	
Carbon dioxide gas is given off.	

[3]

For

Use

(b) The student used the apparatus shown in Fig. 8.2 to investigate neutralisation reactions involving three acids, **A**, **B** and **C**.

For

Examiner's Use

Fig. 8.2

25.0 cm³ of the same solution of the alkali, sodium hydroxide, were placed into each of three beakers.

Acid was slowly added to each of the beakers in turn, and the pH values of the mixtures were displayed on the computer screen.

Some of the measurements from the three experiments are shown in Table 8.2.

acid	source of acid	volume required to neutralise the alkali/cm ³
Α	sample taken from an acidic lake	42.0
В	sample taken from a car battery	15.0
С	acid from a chemical laboratory	60.0

Table 8.2

(i) Suggest a possible pH value of the alkali before any acid was added.

(ii) Describe briefly what the student would observe when the acid had neutralised the alkali.

(iii)	State, with a reason, which acid, A , B or C , had the highest concentration.						
	acid						
	reason						
	[1]						
(iv)	/) The student noticed that, in all three experiments, the temperature of the mixture increased as the acid was added.						
	Suggest why the temperature increased.						
(v)	 Complete the general word equation for the reaction which occurs between an acid and an alkali. 						
acid	+ alkali +						

[2]

Fig. 9.1 shows a section through a small blood vessel. 9 For Examiner's Use cell A cell B Fig. 9.1 (a) Cell A is a red blood cell. (i) Outline two ways in which this cell differs from a liver cell. 1 2 [2] (ii) Describe the function of a red blood cell. [2] (b) Describe the function of cell **B**. [2]

(c) Complete the sentences about the functions of blood plasma, using words from the list. You may use each word once, more than once, or not at all.

For Examiner's Use

adrenaline	enzymes	insoluble	small intestine		
soluble	stomach	starch	vitamins		
Blood plasma transports			nutrients such as sugars.		
These nutrients enter the blood in the					
Blood plasma also transports hormones such as				[3]	

19

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.