



Paper 2 (Core)

## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

| COMBINED SO       | CIENCE |                     | 065 | 3/22 |
|-------------------|--------|---------------------|-----|------|
| CENTRE<br>NUMBER  |        | CANDIDATE<br>NUMBER |     |      |
| CANDIDATE<br>NAME |        |                     |     |      |

Candidates answer on the Question Paper.

No Additional Materials are required.

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

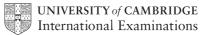
You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.


At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

| For Exam | iner's Use |
|----------|------------|
| 1        |            |
| 2        |            |
| 3        |            |
| 4        |            |
| 5        |            |
| 6        |            |
| 7        |            |
| 8        |            |
| 9        |            |
| Total    |            |

May/June 2012 1 hour 15 minutes

This document consists of 18 printed pages and 2 blank pages.



1 (a) Most atoms of metallic elements found in the Earth's crust exist in compounds called ores which are contained in rocks.

For Examiner's Use

The chemical formulae of some metal compounds found in ores, together with the names of the ores, are shown below.

| argen | ıtite | $Ag_2S$ |
|-------|-------|---------|
| _     |       |         |

chromite FeCr<sub>2</sub>O<sub>4</sub>

galena PbS

scheelite CaWO<sub>4</sub>

| (i) | A binary | compound is | one that | contains | only two | different | elements |
|-----|----------|-------------|----------|----------|----------|-----------|----------|
|-----|----------|-------------|----------|----------|----------|-----------|----------|

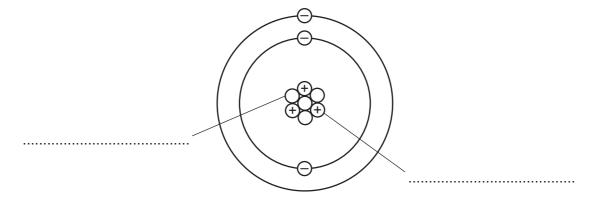
State which of the compounds in the list above are binary compounds.

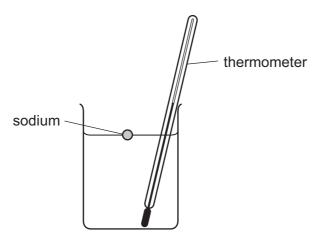
| [1 | 1  |   |
|----|----|---|
| L  | ٠. | J |

(ii) State the ore from which the metallic element tungsten could be extracted.

| [1    | 1 | 1 |  |
|-------|---|---|--|
| <br>- | - | • |  |

**(b)** Fig. 1.1 shows a diagram of an atom of the element lithium. This atom has a nucleon number (mass number) of seven.





Fig. 1.1

Complete Fig. 1.1 by labelling the particles that exist in the nucleus.

[2]

(c) (i) A teacher dropped a small piece of sodium into a beaker containing cold water and a thermometer. She stirred the mixture until all of the sodium had reacted.

For Examiner's Use



Predict **two** observations that could be made as the sodium reacts with the water.

| 1   |     |
|-----|-----|
|     |     |
| 2   |     |
|     |     |
| ••• | [2] |

(ii) Potassium is another element in the same group of the Periodic Table as sodium.

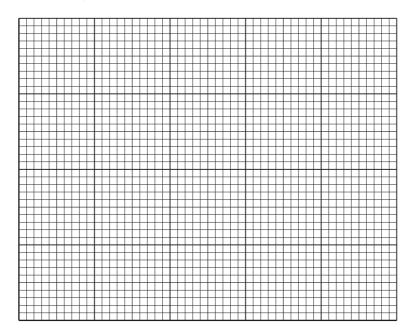
State **one** way in which the reaction of potassium with cold water would be different from that of sodium.

[1]

(iii) Complete the **word** chemical equation for the reaction between potassium and water.

| potassium | + | water | <b></b> |  | + |  |
|-----------|---|-------|---------|--|---|--|
|-----------|---|-------|---------|--|---|--|

[2]


| 2 An athlete warms up by running along a race tra |
|---------------------------------------------------|
|---------------------------------------------------|

(a) He accelerates from rest and after 10 seconds reaches a maximum speed of 7 m/s.

He continues at this speed for another 10 seconds.

During the next 5 seconds, he steadily slows down and stops.

Draw a speed-time graph to show the motion of the athlete.



[4]

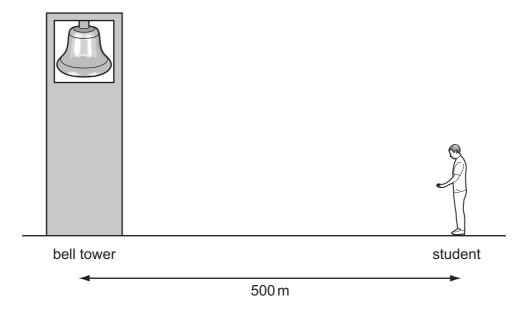
| ( | (b | <b>)</b> During a | ι race the | athlete | cools d | own by | sweating |
|---|----|-------------------|------------|---------|---------|--------|----------|
|   |    |                   |            |         |         |        |          |

| (i) | Explain how evaporation cools down the athlete. |     |
|-----|-------------------------------------------------|-----|
|     |                                                 |     |
|     |                                                 |     |
|     |                                                 | [2] |

(ii) State two factors which would increase the rate of evaporation.

| d   | [0 |
|-----|----|
| and | 1/ |
| ana |    |
|     |    |

|              |                     |                                            | [2]                                                       |
|--------------|---------------------|--------------------------------------------|-----------------------------------------------------------|
| *****        |                     |                                            | [2]                                                       |
| ) Ta         | ble 3.1 shows the   | percentages of three gases in insp         | ired air and in expired air.                              |
| Wr           | rite the name of ea | ach gas in Table 3.1.                      |                                                           |
|              |                     | Table 3.1                                  |                                                           |
|              | gas                 | percentage in inspired air                 | percentage in expired air                                 |
|              |                     | 21                                         | 17                                                        |
|              |                     | 0.04                                       | 4                                                         |
|              |                     |                                            |                                                           |
| <b>:)</b> Ou | utline how oxygen   | 78 is transported to a respiring cell in a | 78 [3] a muscle.                                          |
|              |                     | is transported to a respiring cell in a    | [3] a muscle.                                             |
|              | nen adrenaline is s |                                            | [3] a muscle.                                             |
| <br>         | nen adrenaline is s | is transported to a respiring cell in a    | [3] re quickly to the muscles.                            |
| <br>         | nen adrenaline is s | is transported to a respiring cell in a    | [3] a muscle. [2] re quickly to the muscles.              |
| <br>d) Wi    | nen adrenaline is s | is transported to a respiring cell in a    | [3] a muscle. [2] re quickly to the muscles. [1] creases. |


| (a) |                                                 | ctromagnetic waves. Sound waves are not. in which radio waves differ from sound waves.     | For<br>Examiner's<br>Use |
|-----|-------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------|
|     |                                                 | [1]                                                                                        |                          |
| (b) | Fig. 4.1 shows two li<br>The second is a list o | sts. The first is a list of different types of electromagnetic wave. f some of their uses. |                          |
|     | Draw lines to connec                            | t each type of radiation to its use. [3]                                                   |                          |
|     | radiation                                       | use                                                                                        |                          |
|     | gamma                                           | examining bones and teeth                                                                  |                          |
|     | microwave                                       | remote controls for television sets                                                        |                          |
|     | infra-red                                       | satellite communications                                                                   |                          |
|     | X-rays                                          | sterilising surgical instruments                                                           |                          |

(c) A student carried out an experiment to find the speed of sound in air by watching and listening to a bell being rung.

Fig. 4.1

He stood 500 m from the bell.

4



| e sound took 1.5s to travel from the bell to the student.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Calculate the speed of sound.                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| State the formula that you use and show your working.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| formula used                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| working                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| m/s                                                                           | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| The sound wave produced by the bell had a frequency of 400 Hz.                |                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| State the approximate frequency range which humans can hear.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Hz to Hz                                                                      | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| The mass of the bell is 10 000 kg and it has a volume of 1.1 m <sup>3</sup> . |                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Calculate the density of the bell.                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| State the formula that you use and show your working.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| formula used                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| working                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| kg/m³                                                                         | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                               | Calculate the speed of sound.  State the formula that you use and show your working.  formula used  working m/s  The sound wave produced by the bell had a frequency of 400 Hz.  State the approximate frequency range which humans can hear.  Hz to Hz  The mass of the bell is 10 000 kg and it has a volume of 1.1 m³.  Calculate the density of the bell.  State the formula that you use and show your working.  formula used  working |  |

For

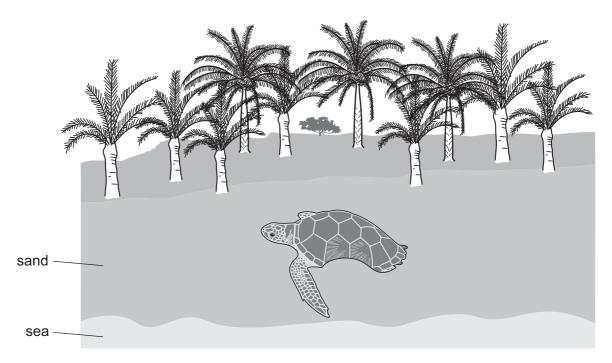
Examiner's Use

5

Water supplies are often impure and have to be purified to make them safe for humans to drink. (a) State **one** process that is used to make water safe for humans to drink. Explain, for the process you have chosen, how this process purifies the water. process how it purifies **(b)** Water is a compound which contains the elements hydrogen and oxygen. Describe one difference, other than physical state, between the compound water and a mixture of the elements hydrogen and oxygen. (c) Table 5.1 shows information about water and two compounds that can form mixtures with water. Table 5.1 melting point/°C boiling point/°C compound solubility in water 0 100 water sodium chloride 801 1413 soluble -9569 insoluble hexane (i) Describe briefly how a sample of sodium chloride could be obtained from a solution of sodium chloride.

|     | (ii) | Use the information in Table 5.1 to predict and explain whether or not a mixture of hexane and water could be separated at room temperature (20 °C) by the method of filtration. |
|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      |                                                                                                                                                                                  |
|     |      |                                                                                                                                                                                  |
|     |      | [2]                                                                                                                                                                              |
| (d) | A s  | tudent burned a small piece of magnesium, using the apparatus shown in Fig. 5.1.                                                                                                 |
|     |      | magnesium burning water  Fig. 5.1  en the reaction finished, the magnesium oxide was mixed with the water in the rom of the gas jar.                                             |
|     | (i)  | Magnesium oxide is made of positive ions and negative ions.                                                                                                                      |
|     |      | Describe briefly what happens to an atom when it is converted into a negative ion.                                                                                               |
|     |      |                                                                                                                                                                                  |
|     |      | [1]                                                                                                                                                                              |
|     | (ii) | The student added a few drops of full range indicator solution (Universal Indicator) to the mixture of water and magnesium oxide.                                                |
|     |      | The indicator changed from green to blue.                                                                                                                                        |
|     |      | Explain why this happens.                                                                                                                                                        |
|     |      |                                                                                                                                                                                  |
|     |      |                                                                                                                                                                                  |

6


| A car is travelling along a road.                                                               |
|-------------------------------------------------------------------------------------------------|
| (a) Many forces act on the car.                                                                 |
| (i) State two effects that forces can have on an object.                                        |
| 1                                                                                               |
| 2                                                                                               |
| [2]                                                                                             |
| (ii) State the unit used to measure force. [1]                                                  |
| (ii) State the drift does to modestre lorde.                                                    |
| (b) Fig. 6.1 shows a car travelling in a straight line. The car is decelerating (slowing down). |
| F ◆ B                                                                                           |
| Fig. 6.1                                                                                        |
| The total forward force on the car is <b>F</b> and the total backward force is <b>B</b> .       |
| Which force is greater, <b>F</b> or <b>B</b> ?                                                  |
| Explain your answer.                                                                            |
|                                                                                                 |

| (c) | Using some of the words below, complete the sentences to explain the energy changes which take place in a car when petrol (gasoline) is used to power the car. |        |        |          |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----------|--|
|     | boiled                                                                                                                                                         | burned | cooled | chemical |  |

|     | bolled                                              | burnea              | coolea             | cnemicai              |    |
|-----|-----------------------------------------------------|---------------------|--------------------|-----------------------|----|
|     | heat                                                | kinetic             | nuclear            | sound                 |    |
|     | Petrol (gasoline) contains                          |                     |                    |                       |    |
|     | i                                                   | n the engine to pro | oduce neat energy. | rne near energy       |    |
|     | is changed into                                     |                     | energy which mov   | es the car. This      |    |
|     | process is not very efficient                       | t and much energy   | is wasted as       |                       |    |
|     | energy and                                          | enerç               | gy.                | [5                    | .] |
| (d) | Petrol (gasoline) is a mixtu                        | re of hydrocarbons  | S.                 |                       |    |
|     | Explain why the mixture o dioxide and water vapour. | f waste gases (ex   | chaust gases) from | a car contains carboi | า  |
|     |                                                     |                     |                    |                       |    |
|     |                                                     |                     |                    |                       | •• |
|     |                                                     |                     |                    | [2                    | .] |

**7** Hawksbill turtles are an endangered species. They lay their eggs in nests in the sand on a beach.

For Examiner's Use



The sex of hawksbill turtles is determined by the temperature of the sand in which the eggs develop.

- At 29 °C, equal numbers of males and females develop.
- Higher temperatures produce more females.
- Lower temperatures produce more males.
- (a) Researchers measured the temperature, at a depth of 30 cm, in two different parts of a beach, on Antigua, where hawksbill turtles lay their eggs. The results are shown in Fig. 7.1. The tops of the bars represent the mean temperature.




Fig. 7.1

|     | With reference to | o Fig. 7.1, describe the ef                             | fect of the forest on the te                  | emperature of the sand.                                  |
|-----|-------------------|---------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|
|     |                   |                                                         |                                               |                                                          |
|     |                   |                                                         |                                               | [2]                                                      |
|     |                   |                                                         |                                               | [2]                                                      |
| (b) |                   | s counted the proportion<br>ent parts of the beach. The |                                               | •                                                        |
|     |                   | Table                                                   | 7.1                                           |                                                          |
| ı   | part of beach     | nests producing<br>more males than<br>females           | nests producing<br>more females than<br>males | nests producing<br>equal numbers of<br>females and males |
|     | open sand         | 0                                                       | 16                                            | 0                                                        |
|     | in forest         | 36                                                      | 0                                             | 0                                                        |
| (c) |                   |                                                         |                                               | [2]                                                      |
|     |                   |                                                         |                                               |                                                          |
|     |                   |                                                         |                                               |                                                          |
| (d) | result from defo  |                                                         |                                               | ·                                                        |
|     |                   |                                                         |                                               |                                                          |
|     |                   |                                                         |                                               |                                                          |
|     |                   |                                                         |                                               |                                                          |

**8** Fig. 8.1 shows apparatus a student used to investigate temperature changes that occurred during chemical reactions.

For Examiner's Use

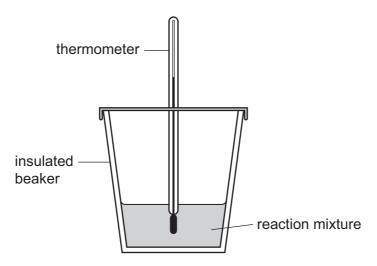



Fig. 8.1

The student added reactants to the insulated beaker and stirred the mixture. She recorded the final temperature of each mixture.

At the start of each experiment, the temperature of the reactants was 22 °C.

Table 8.1 contains the results the student obtained.

Table 8.1

| experiment | reactant A               | reactant B                   | final<br>temperature/°C |
|------------|--------------------------|------------------------------|-------------------------|
| 1          | dilute hydrochloric acid | sodium hydrogencarbonate     | 16                      |
| 2          | dilute hydrochloric acid | potassium hydroxide solution | 26                      |
| 3          | magnesium                | copper sulfate solution      | 43                      |
| 4          | copper                   | magnesium sulfate solution   | 22                      |

| (a) | (i) | Explain which experiment, 1, 2, 3 or 4, was a neutralisation reaction between acid and an alkali. | ı an |
|-----|-----|---------------------------------------------------------------------------------------------------|------|
|     |     | experiment                                                                                        |      |
|     |     | explanation                                                                                       |      |
|     |     |                                                                                                   | [1]  |

|     | (ii)  | State and explain which experiment, 1, 2, 3 or 4, was an endothermic reaction.                                                                                              |  |
|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     |       | experiment                                                                                                                                                                  |  |
|     |       | explanation                                                                                                                                                                 |  |
|     |       | [1]                                                                                                                                                                         |  |
|     | (iii) | Suggest why the temperature did <b>not</b> change when copper was added to magnesium sulfate solution.                                                                      |  |
|     |       | [1]                                                                                                                                                                         |  |
| (b) |       | e student used the apparatus in Fig. 8.1 to carry out two further experiments, <b>5</b> and o investigate the exothermic reaction between zinc and copper sulfate solution. |  |
|     |       | experiment 5 the student used zinc powder and in experiment 6 she used a single ce of zinc.                                                                                 |  |
|     | The   | e mass of zinc in both experiments was the same.                                                                                                                            |  |
|     | •     | ggest and explain briefly in which experiment, 5 or 6, the temperature increased re quickly.                                                                                |  |
|     | exp   | periment                                                                                                                                                                    |  |
|     | exp   | planation                                                                                                                                                                   |  |
|     |       |                                                                                                                                                                             |  |
|     |       | [2]                                                                                                                                                                         |  |

| (a) | Exp  | plain what is meant by the term <i>enzyme</i> .                                                                                                                                     |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      |                                                                                                                                                                                     |
|     |      |                                                                                                                                                                                     |
|     |      | [2]                                                                                                                                                                                 |
| (b) | Fig  | . 9.1 shows the effect of pH on the activity of an enzyme.                                                                                                                          |
|     |      | ate of eaction 1 2 3 4 5 6 7 8 9 10 11 12 pH                                                                                                                                        |
|     |      | ·                                                                                                                                                                                   |
|     | _    | Fig. 9.1                                                                                                                                                                            |
|     | Des  | scribe the effect of pH on the activity of this enzyme.                                                                                                                             |
|     |      |                                                                                                                                                                                     |
|     |      |                                                                                                                                                                                     |
|     |      | [2]                                                                                                                                                                                 |
| (c) |      | enzyme works in the human stomach, where hydrochloric acid is secreted. This tyme is adapted to work best in these conditions.                                                      |
|     | (i)  | On Fig. 9.1, sketch a curve to show how pH affects the activity of this stomach enzyme. [1]                                                                                         |
|     | (ii) | After the food has been in the stomach for a while, it passes into the duodenum. Pancreatic juice, which contains sodium hydrogencarbonate, is mixed with the food in the duodenum. |
|     |      | Explain why the stomach enzyme stops working when it enters the duodenum.                                                                                                           |
|     |      |                                                                                                                                                                                     |
|     |      |                                                                                                                                                                                     |
|     |      | [2]                                                                                                                                                                                 |

| (d) | Enzymes in the human digestive system help to break down large food molecules into smaller molecules. |
|-----|-------------------------------------------------------------------------------------------------------|
|     | Explain why this is important.                                                                        |
|     |                                                                                                       |
|     |                                                                                                       |
|     | [2]                                                                                                   |

## **BLANK PAGE**

## **BLANK PAGE**

DATA SHEET
The Periodic Table of the Elements

| Group | 0    | 4 Helium      | 20<br><b>Ne</b><br>Neon             | 40<br><b>Ar</b><br>Argon           | 84<br>Krypton                | 36    | Xe Xenon Xe 54               | <b>Rn</b><br>Radon                |                       | Lutetium 77                            | <b>Lr</b><br>Lawrencium<br>103                                         |
|-------|------|---------------|-------------------------------------|------------------------------------|------------------------------|-------|------------------------------|-----------------------------------|-----------------------|----------------------------------------|------------------------------------------------------------------------|
|       | NII/ |               | 19 <b>–</b><br><b>F</b><br>Fluorine | 35.5 <b>C1</b> Chlorine            | 80<br><b>Br</b><br>Bromine   | 35    | lodine 53                    | At<br>Astatine<br>85              |                       | 173 <b>Yb</b> Ytterbium 70             | Nobelium                                                               |
|       | I/   |               | 16<br>O<br>Oxygen<br>8              | 32 <b>S</b> Sulfur                 | 79<br><b>Se</b><br>Selenium  | 34    | <b>Te</b> Tellurium 52       | Po<br>Polonium<br>84              |                       | 169<br><b>Tm</b><br>Thulium            | Md<br>Mendelevium<br>101                                               |
|       | >    |               | 14 <b>N</b> Nitrogen 7              | 31<br><b>P</b><br>Phosphorus<br>15 | 75<br><b>As</b><br>Arsenic   | 122   | Sb<br>Antimony<br>51         | 209<br><b>Bi</b><br>Bismuth<br>83 |                       | 167<br><b>Er</b><br>Erbium<br>68       | Fm<br>Fermium<br>100                                                   |
|       | >    |               | 12<br><b>C</b><br>Carbon<br>6       | 28<br><b>Si</b><br>Silicon         | 73<br><b>Ge</b><br>Germanium | 32    | So Tin                       | 207<br><b>Pb</b><br>Lead          |                       | 165<br><b>Ho</b><br>Holmium<br>67      | Es<br>Einsteinium<br>99                                                |
|       | =    |               | 11 <b>B</b> Boron 5                 | 27<br><b>A1</b><br>Auminium<br>13  | 70<br><b>Ga</b><br>Gallium   | 31    | In<br>Indium                 | 204 <b>T 1</b> Thallium           |                       | 162<br><b>Dy</b><br>Dysprosium<br>66   | Cf<br>Californium<br>98                                                |
|       |      |               |                                     |                                    | 65<br><b>Zn</b><br>Zinc      | 30    | Cd<br>Cadmium<br>48          | 201<br><b>Hg</b><br>Mercury<br>80 |                       | 159 <b>Tb</b> Terbium 65               | Bk<br>Berkelium<br>97                                                  |
|       |      |               |                                     |                                    | 64<br>Copper                 | 108   |                              | 197<br><b>Au</b><br>Gold          |                       | 157 <b>Gd</b> Gadolinium 64            | Cm<br>Curium<br>96                                                     |
|       |      |               |                                     |                                    | 59<br>Nickel                 | 106   | Pd<br>Palladium<br>46        | 195 <b>Pt</b> Platinum 78         |                       | 152<br><b>Eu</b><br>Europium<br>63     | Am Americium 95                                                        |
|       |      |               |                                     |                                    | 59<br>Cobalt                 | 103   | <b>Rho</b> dium 45           | 192 <b>Ir</b><br>Iridium<br>77    |                       | Sm<br>Samarium<br>62                   | <b>Pu</b> Plutonium 94                                                 |
|       |      | 1<br>Hydrogen |                                     |                                    | 56<br><b>Fe</b><br>Iron      | 101   | <b>Ru</b><br>Ruthenium<br>44 | 190<br><b>Os</b><br>Osmium<br>76  |                       | Pm<br>Promethium<br>61                 | Neptunium                                                              |
|       |      |               |                                     |                                    | 55<br><b>Mn</b><br>Manganese | 52    | Tc<br>Technetium<br>43       | 186<br><b>Re</b><br>Rhenium<br>75 |                       | Neodymium<br>60                        | 238<br><b>U</b><br>Uranium<br>92                                       |
|       |      |               |                                     |                                    | 52<br><b>Cr</b><br>Chromium  | 24    | Molybdenum<br>42             | 184 <b>W</b> Tungsten 74          |                       | 141<br><b>Pr</b><br>Praseodymium<br>59 | Pa<br>Protactinium<br>91                                               |
|       |      |               |                                     |                                    | 51<br>Vanadium               | 23    | _ E                          | 181 <b>Ta</b> Tantalum 73         | _                     | 140 <b>Ce</b> Cerium                   | 232<br><b>Th</b><br>Thorium                                            |
|       |      |               |                                     |                                    | 48                           | 22 91 | <b>Zr</b><br>Zirconium<br>40 | 178 <b>#</b> Hafnium * 72         |                       | 1                                      | nic mass<br>ibol<br>nic) number                                        |
|       |      |               |                                     |                                    | Scandium                     | 21    | → Yttrium                    | 139 <b>La</b> Lanthanum 57 *      | Ac Actinium 89        | l series<br>eries                      | a = relative atomic mass  X = atomic symbol b = proton (atomic) number |
|       | =    |               | 9<br><b>Be</b><br>Beryllium         | 24 Mg Magnesium 12                 |                              | 20 88 | Strontium                    | 137<br><b>Ba</b><br>Barium<br>56  | 226 <b>Ra</b> Radium  | *58-71 Lanthanoid series               | а <b>х</b>                                                             |
|       | _    |               | 7<br><b>Li</b><br>Lithium           | 23<br><b>Na</b><br>Sodium          | 39 <b>X</b> Potassium        | 85    | <b>Rb</b> Rubidium 37        | 133<br><b>Cs</b><br>Caesium<br>55 | <b>Fr</b> Francium 87 | *58-71 L                               | Key                                                                    |

The volume of one mole of any gas is 24 dm<sup>3</sup> at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.