UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | **COMBINED SCIENCE** 0653/52 Paper 5 Practical Test May/June 2011 1 hour 30 minutes Candidates answer on the Question Paper. Additional Materials: As listed in Instructions to Supervisors. #### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES. Answer all questions. Chemistry practical notes for this paper are printed on page 12. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | For Examiner's Use | | | |--------------------|--|--| | 1 | | | | 2 | | | | 3 | | | | Total | | | This document consists of 9 printed pages and 3 blank pages. 1 (a) You are going to investigate the energy content of bread. Fig. 1.1 - Clamp a large test-tube as shown in Fig. 1.1. - Measure 20 cm³ of water. Put this into the large test-tube. - Clamp the thermometer in the large test-tube as shown in Fig. 1.1. Ensure the thermometer is in the water. - Read the temperature of the water, **t**_s, and record it in Table 1.1. - Record the mass of the bread, m_b, in Table 1.1. - Using a mounted needle pick up the piece of bread (m_b) . Ignite the bread by placing it into a flame. - Quickly place the burning bread under the test-tube so that it heats the water. - If the bread stops burning, re-ignite it by placing it back into the flame. - Record the maximum temperature, \mathbf{t}_{m} , of the water. Table 1.1 | starting
temperature
t _s /°C | maximum
temperature
t _m /°C | temperature
rise
T/°C | mass of bread
m _b /g | mass of water m _w /g | |---|--|-----------------------------|------------------------------------|---------------------------------| | | | | | 20 | [3] For Examiner's Use (i) Calculate T, the temperature rise of the water, using the formula $T = (t_m - t_s)$ and record it in Table 1.1. © UCLES 2011 0653/52/M/J/11 For Examiner's Use (ii) The energy content of the bread can be determined by the following formula:- $E = 0.084 \times T$ Calculate the energy content of the bread using the formula. Show your working. energy content of the bread _____kJ/g [2] (iii) Is the energy content that you calculated likely to be accurate and close to the true energy content? Explain your answer. [1] (iv) Suggest one way in which the accuracy of the experiment could be improved. _____[1] (b) • Take a large test-tube place it into the test-tube rack. Place a piece of fresh bread into the test-tube. Add about 5 cm³ of water and gently break the bread up using a glass rod. Add four drops of iodine solution to the tube. Record, if any, the colour change of the solution. (i) The colour change for the iodine test [1] to (ii) State if your result is positive for the substance the iodine tests for. Name this substance. result substance [1] # **BLANK PAGE** - 2 You are going to find the mass of a metre rule using the principle of moments. - For Examiner's Use - Push the pin into the cork. - Clamp the cork so that the pin protrudes horizontally as shown in Fig. 2.1. - Suspend the rule from the pin at the 100 mm mark as shown in Fig. 2.2. Ensure the rule is free to pivot about the pin. - Attach the other end of the rule to the newton meter, at the 900 mm mark, as shown in Fig. 2.2. - Suspend the newton meter from the clamp and stand as shown in Fig. 2.2. - Attach the 500 g mass at the 200 mm mark on the rule. - Make the rule horizontal by adjusting the height of the clamp holding the newton meter. Fig. 2.1 Fig. 2.2 shows the apparatus when set up. Fig. 2.2 (a) The distance d, from the pivot to the mass, as shown in Fig. 2.2, is recorded in Table 2.1. For Examiner's Use Read the force shown on the scale of the newton meter. Record this value in Table 2.1. - (b) (i) Move the 500 g mass to the 250 mm mark on the rule. Read the newton meter again. Record the value of d and the force in Table 2.1. - (ii) Repeat **three** more times, moving the mass 50 mm nearer the centre of the rule each time. Table 2.1 | d/mm | force/N | |------|---------| | 100 | | | | | | | | | | | | | | [3] (c) (i) Plot a graph of force (vertical axis) against distance (horizontal axis). For Examiner's Use Draw the best straight line through your points. The line will **not** pass through the point (0,0). force/N **d**/mm (ii) Extend the line so that it cuts the vertical axis. [1] (d) (i) Read off the value of the force when the distance d = 0. value of force = _____N [1] (ii) Convert the force into a mass, \mathbf{m} , in grams. Remember that the force of gravity on 100 g is 1.0 N. mass **m** = _____ g [1] For Examiner's Use | (iii) | The mass of the rule is equal to 2 m . | | | |-------|--|---|-----| | | Using your value from (d)(ii), calculate the mass of the rule. | mass of the rule = | a | [1] | © UCLES 2011 0653/52/M/J/11 3 X is a mixture of two compounds each containing different ions. Carry out the following tests on mixture **X** and record your observations. (a) What is the colour of solid X? [1] Place about 10cm³ of water into the large test-tube. Add all of the solid **X** and stopper the tube. Shake the contents for about a minute. Filter the contents of the test-tube. Keep the filtrate for testing in part (c). **(b)** What is the colour of the residue on the filter paper, [2] (c) Carry out the following tests on the filtrate from (a), recording all your observations. (i) Place about 1 cm³ of the filtrate into a clean test-tube. Gradually add aqueous sodium hydroxide until there is no further change. observations [2] (ii) Place another 1 cm³ portion of the filtrate into a clean test-tube. Add agueous ammonia, a little at a time until there is no further change. observations [2] (iii) To another 1 cm³ portion of the filtrate, add a few drops of dilute hydrochloric acid followed by aqueous barium chloride. observation _____ [1] (iv) Name the two ions in the filtrate. cation anion _____ [2] For Examiner's Use # **BLANK PAGE** # **BLANK PAGE** #### **CHEMISTRY PRACTICAL NOTES** #### **Test for anions** | anion | test | test result | |---|---|--| | carbonate (CO ₃ ²⁻) | add dilute acid | effervescence, carbon dioxide produced | | chloride (Cl ⁻)
[in solution] | acidify with dilute nitric acid, then add aqueous silver nitrate | white ppt. | | nitrate (NO ₃ -)
[in solution] | add aqueous sodium hydroxide then aluminium foil; warm carefully | ammonia produced | | sulfate (SO ₄ ²⁻)
[in solution] | acidify then add aqueous barium chloride <i>or</i> aqueous barium nitrate | white ppt. | # Test for aqueous cations | cation | effect of aqueous sodium hydroxide | effect of aqueous ammonia | |--|--|--| | ammonium (NH ₄ ⁺) | ammonia produced on warming | - | | copper(II) (Cu ²⁺) | light blue ppt., insoluble in excess | light blue ppt., soluble in excess giving a dark blue solution | | iron(II) (Fe ²⁺) | green ppt., insoluble in excess | green ppt., insoluble in excess | | iron(III) (Fe ³⁺) | red-brown ppt., insoluble in excess | red-brown ppt., insoluble in excess | | zinc (Zn ²⁺) | white ppt., soluble in excess giving a colourless solution | white ppt., soluble in excess giving a colourless solution | ## **Test for gases** | gas | test and test results | | |-----------------------------------|----------------------------------|--| | ammonia (NH ₃) | turns damp red litmus paper blue | | | carbon dioxide (CO ₂) | turns limewater milky | | | chlorine (Cl ₂) | bleaches damp litmus paper | | | hydrogen (H ₂) | "pops" with a lighted splint | | | oxygen (O ₂) | relights a glowing splint | | Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local © UCLES 2011 0653/52/M/J/11