

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

~	
7	
W	
ന	
W	
0	
0	
∞	
4	

COMBINED SCIENCE

0653/21

Paper 2 (Core)

May/June 2011

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

This document consists of 21 printed pages and 3 blank pages.

1 (a) A student carried out an experiment to find which substances in the environment caused nails made of mild steel to become rusty.

For Examiner's Use

She selected three identical nails and placed them in sealed test-tubes, **A**, **B** and **C**, as shown in Fig. 1.1.

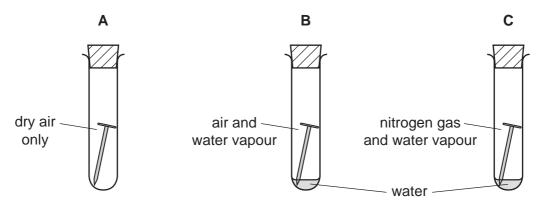


Fig. 1.1

The student observed that the nail in test-tube **B** was the only one to become rusty.

Explain why the nail in test-tube **B** in Fig. 1.1 rusted but the nails in the other two tubes

did not.	,	Ü		
				[3]

(b) Bicycle chains that are made of steel are usually covered in oil made of hydrocarbon molecules. This helps to prevent rusting.

For Examiner's Use

- (i) State which of the chemical formulae, ${\bf V}$ to ${\bf Z}$, represent hydrocarbons. Explain your answer.
 - v H₂OC
 - $\mathbf{w} \quad C_2H_2$
 - $X C_6H_{12}O_6$
 - $Y C_{10}H_{22}$
 - z HCN

	chemical formulae
	explanation
	[2]
(ii)	Suggest one property of a hydrocarbon oil which makes it suitable for use as a barrier to prevent rusting.
	[1]
(iii)	Hydrocarbons have many uses.
	State one important use of hydrocarbons, other than preventing rusting.
	[1]

2 (a) Fig. 2.1 shows a crane powered by an electric motor.

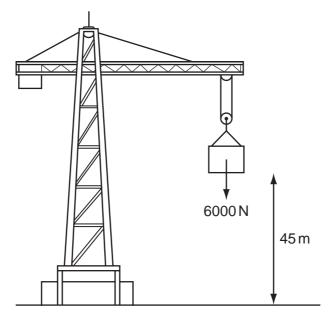
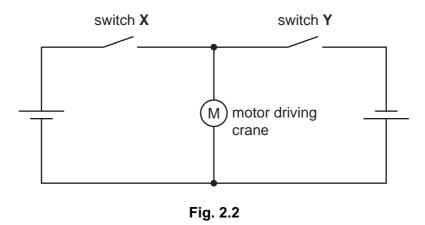


Fig. 2.1

Calculate the work done raising a load of $6000\,\mathrm{N}$ by a distance of $45\,\mathrm{m}$.

State the formula that you use and show your working.


formula used

working

J [2]

(b) Fig. 2.2 shows the circuit used by a student to operate the electric motor of a model crane.

For Examiner's Use

When the student closes switch \mathbf{X} , the motor runs and the crane is able to lift a load.

- (i) The student then opens switch **X** and closes switch **Y**.

 Describe what happens to the motor.
- (ii) The student closes both switches. Describe what happens to the motor.

The smell of food cooking is detected by special cells in a person's nose. The salivary glands may respond to this stimulus by secreting saliva.

9.5			soperial to this chimanac by occidenting cannot	
(a)	Nar	ne the	e receptor and the effector in this response.	
	rece	eptor		
	effe	ector		[2]
(b)	Wh	en foc	od has been taken into a person's mouth, it is mixed with saliva.	
			ontains the enzyme amylase. Amylase digests large starch molecules ugar molecules.	to
	(i)	What	t is an <i>enzyme</i> ?	
				[2]
	(ii)	Expla	ain why digestion is necessary.	
				[2]

(c) Fig. 3.1 shows a section through a molar tooth.

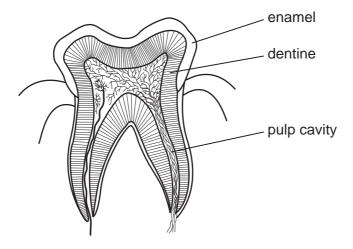


Fig. 3.1

(i)	Describe how the molar teeth help in the digestion of food.
	[2]
(ii)	Explain why a diet containing milk and other dairy foods can help to form strong teeth.
	[2]

4 (a) (i) Use words from the list to complete the sentences below.

For
Examiner's
Use

	cor	mpounds	energy	fission	force	fusion	nuclei
		In nuclear	power stations,	the generation	of electricity l	begins with the	process of
		nuclear			ocess,		of atoms
		like uraniur	m are split. Sma	ll amounts of ເ	ıranium can re	elease large an	nounts of
				·			[3]
	(ii)		m nuclear fissio e conversion of				The first stage
		Describe h	ow heat energy	is used to gen	erate electrica	al energy in a p	ower station.
							[3]
(b)		rkers in nu terials.	clear power st	ations may b	e exposed to	radiation from	m radioactive
	(i)	Explain wh	y exposure to s	uch radiation n	nay be hazaro	lous to their he	alth.
							[2]

(ii) A badge made from photographic film can be used to check the exposure of the workers to radiation. Fig. 4.1 shows a worker wearing his badge.

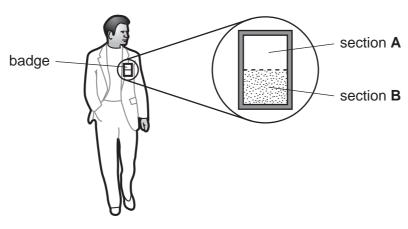


Fig. 4.1

A simple badge has two sections $\bf A$ and $\bf B$ for the detection of beta and gamma radiation. Fig. 4.2 shows the side view through the badge.

For Examiner's Use

[2]

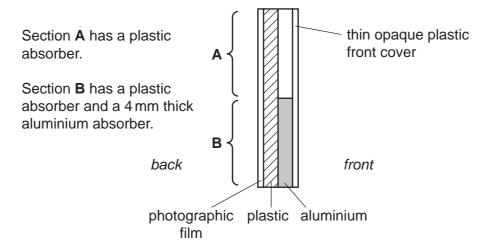


Fig. 4.2

When the photographic film from the badge is developed, it turns black where it has been exposed to radiation.

Complete Table 4.1 to show whether the photographic film will turn black when exposed to beta or gamma radiations.

Table 4.1

radiation	will section A turn black?	will section B turn black?
beta		
gamma	yes	

(iii)	Explain why the badge can not be used to detect alpha radiation.	
		[1]

5 Dung beetles live in places where large grass-eating animals, such as cattle, also live. The beetles collect dung produced by the cattle and make it into a ball, which they roll away and bury.

For Examiner's Use

The beetles feed on the dung.

Fig. 5.1 shows a dung beetle rolling a ball of dung.

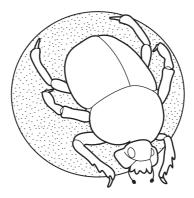


Fig. 5.1

(a) On the list below, draw lines to link each organism to its correct position in the food chain.

organism	position in food chain
dung beetle	producer
grass	consumer
cattle	decomposer

[2]

(b) Dung beetles are important in the carbon cycle.

For Examiner's Use

Choose some of the words in the list to complete the sentences about the carbon cycle.

	carbon	dioxide	digestion	nitrog	en ox	cygen	
	photosynthesis	respirati	on ro	oots	stomata	water	
	Dung beetles digest sugars are taken into						
			sults in the rele	ease of			•
	into the air. Plants at	osorb this gas	through their				
	gas is then combined	d with water to	make carbohy	drates by .			[4]
(c)	If a farmer keeps too	many cattle in	one place, the	e soil may b	e damage	d.	
	Explain how keeping	too many catt	le can damage	the soil.			
							 [2]
							[-]

6 The Earth provides raw materials which are processed into useful products.

For Examiner's Use

(a) Choose products from the list to complete the right hand column of Table 6.1. The first one has been done as an example.

aluminium ceramics chlorine glass steel

Table 6.1

raw material	useful product
sand and metal oxides	glass
iron ore	
sodium chloride	

n	1
ıZ	
L—	ч

(b) Air is a **mixture** of elements and compounds.

Nitrogen dioxide, NO₂, is a **compound** of nitrogen and oxygen.

(i)	State two differences between a mixture of two elements and a compound of the same elements.
	1
	2
	[2]
(ii)	Air which has been cooled and pressurised turns to a liquid. The gases nitrogen and oxygen can be separated, by fractional distillation, from liquid air.
	Suggest why it is possible to separate these elements from liquid air by fractional distillation.
	L'1

(c)	Nitrogen and hydrogen can be made to react together to form ammonia, NH ₃ .					
	This	This reaction requires a catalyst and a high temperature.				
	(i)	Describe the advantages of using a catalyst in a chemical reaction.				
			[2]			
	(ii)	State the effect of a high temperature on the rate of the reaction.				
			[1]			
((iii)	Ammonia is used to make the salts ammonium nitrate and ammonium phosphat which are used as fertilisers.	te,			
		State the type of substance which reacts with ammonia to make salts, and nan the type of chemical reaction which occurs.	ne			
		type of substance				
		type of reaction	[2]			

For Examiner's Use 7 In an experiment, weights were hung on a spring and the length of the spring measured.

For Examiner's Use

Fig. 7.1 shows a graph of the results.

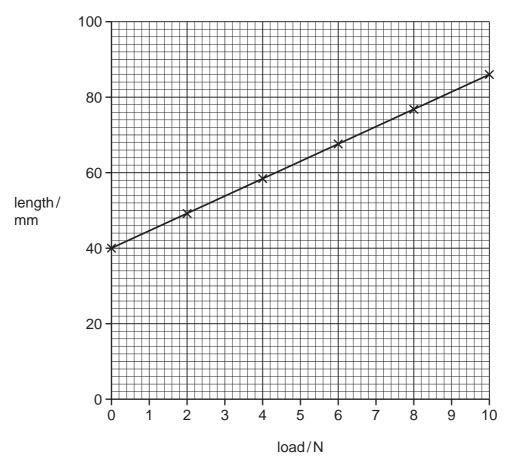


Fig. 7.1

(a) Describe the relationship between the load on the spring and the length of the spring.

[1

(b) Fig. 7.2 shows a wooden bird suspended from the spring.

For Examiner's Use

Fig. 7.2

The direction of the upward force of the spring has been labelled **A**.

Draw another arrow on the diagram to show the direction of the other force acting on the bird. Label your arrow **B**. [1]

(c)	The bird is not moving. What can be stated about the sizes and directions of forces and ${\bf B}$?	Α
	r	11

For Examiner's Use

	10				
(d)	The volume of the bird is 30 cm ³ and the density of the wood is 0.8 g/cm ³ .				
	Show that the mass of the bird is 24 g.				
	State the formula that you use and show your working.				
	formula used				
	working				
		[2]			
(e)	The metal in the spring is an example of a solid.				
	Fig. 7.3 shows the arrangement of particles in a solid, liquid and gas.				
	X Y Z				
	Fig. 7.3				
	Which diagram X , Y or Z shows the arrangement of particles in the spring?				
	Explain your answer.				
	diagram				
	explanation				
		[2]			

8 Fig. 8.1 shows a sperm cell.

For Examiner's Use

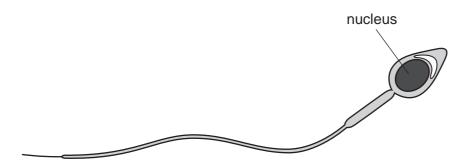


Fig. 8.1

(a)	(i)	i) State the name and number of the structures present in the nucleus of a human sperm cell.			
			[2]		
	(ii)	On Fig. 8.1, use label lines to label and name two structures, other than to nucleus, that are found in all animal cells.			
	(iii)	Describe two ways in which the shape of a sperm cell helps it to swim to an egg			
		1			
		2			
			[2]		
(b)	Naı	me the organ in which sperm are produced.	[1]		
(c)	Des	scribe what happens immediately after a sperm meets an egg in the oviduct.			
			[2]		

For Examiner's Use

9

The chemical formulae for each of three compounds found in rocks are shown below. $CaMg(CO_3)_2$ dolomite KA1Si3O8 potassium feldspar SiO₂ quartz (a) (i) State the total number of atoms shown in the formula of potassium feldspar. (ii) When a flame test is carried out on one of the compounds in the list, a lilac colour is produced. Suggest, with a reason, which one of the compounds is being tested. reason [2] (iii) Two of the elements shown in the chemical formulae above are in Period 4 of the Periodic Table. State the **name** of **one** of these elements. [1] (b) When calcium carbonate, CaCO₃, is heated strongly for some time using a Bunsen flame, a chemical reaction occurs. The word equation for this reaction is calcium carbonate ---- calcium oxide + carbon dioxide (i) State the type of chemical reaction which occurs. Explain your answer. type of reaction explanation

(ii)	Predict whether the mass of calcium oxide which is produced in this reaction is • greater than,				
	• or less than,				
	or the same as the mass of the calcium carbonate which is used.				
	Circle your prediction.				
	Explain your answer.				
	[1]				
(iii)	The student then added a little of the calcium oxide to some cold water that contains full range indicator solution (Universal Indicator).				
	The student made two observations which are shown below.				
	Explain these observations.				
	observation 1 There was a large increase in the temperature of the mixture.				
	explanation				
	observation 2 The indicator changed colour from green to purple.				
	explanation				
	[2]				

For Examiner's Use **10** The speakers of three MP3 music players are being compared.

For Examiner's Use

(a) The speakers are tested to find the range of frequencies they produce.

Table 10.1 shows the results.

Table 10.1

speaker	range of frequencies/Hz
A	100 to 10000
В	20 to 25 000
С	20 to 40 000

	(i)	What is meant by the term frequency?	
			[1]
	(ii)	Use the information in Table 10.1 to suggest why the music played throu speaker A might not sound as good as the other two speakers.	gh
			[1]
	(iii)	Music played through speakers B and C sounds the same.	
		Suggest a reason for this.	
			[1]
(b)	An	MP3 player is able to receive a radio station broadcasting on 102.7MHz/0.28m.	
	Wh	at does 0.28 m refer to?	
			[1]

BLANK PAGE

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Neon 10 40 Ar Argon	84 Krypton 36	131 Xe Xenon 54	Radon 86		175 Lutetium 71	Lr Lawrencium 103
	IIΛ		19 Fluorine 9 35.5 C.1 Cahorine	80 Br Bromine	127 I lodine	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102
	Ν		16 O Oxygen 8 32 Sulfur 16	Selenium 34		Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101
	^		Nitrogen 7 31 Phosphorus	AS Asenic		209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium
	ΛΙ		Carbon 6 Carbon 8 Silicon 14	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead		165 Ho Holmium 67	ES teinium
	III		11 Baron 5 27 AI Aluminium 13	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium 81		162 Dy Dysprosium 66	Californium
				65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium
				64 Cu Copper	108 Ag Silver	197 Au Gold		157 Gd Gadolinium 64	Curium 96
Group				59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium
Gre				59 Cobalt	103 Rh Rhodium	192 I r Iridium		Sm Samarium 62	
		1 H ydrogen		56 Fe Iron	Ruthenium	190 Os Osmium 76		Pm Promethium 61	Neptunium
				55 Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	238 U Uranium 92
				52 Cr Chromium	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91
				51 Vanadium 23	93 Nb Niobium	181 Ta Tantalum 73		140 Ce Cerium 58	232 Th Thorium
				48 T Trtanium	91 Zr Zirconium 40	178 # Hafnium			nic mass bol nic) number
				45 Scandium 21	89 × Yttrium	La Lanthanum 57 *	Actinium Actinium 189	series eries	 a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Beryllium 4 24 Magnesium 12	Calcium	Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series	« × □
	_		7 Lithium 3 23 Na Sodum 11	39 K Potassium	Rb Rubidium 37	133 Cs Caesium 55	Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.