



## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

| CANDIDATE<br>NAME |                                       |                     |                   |  |  |  |  |  |  |
|-------------------|---------------------------------------|---------------------|-------------------|--|--|--|--|--|--|
| CENTRE<br>NUMBER  |                                       | CANDIDATE<br>NUMBER |                   |  |  |  |  |  |  |
| COMBINED SC       | CIENCE                                |                     | 0653/02           |  |  |  |  |  |  |
| Paper 2 (Core)    |                                       | May/June 2008       |                   |  |  |  |  |  |  |
|                   |                                       |                     | 1 hour 15 minutes |  |  |  |  |  |  |
| Candidates ans    | swer on the Question Paper.           |                     |                   |  |  |  |  |  |  |
| No Additional M   | No Additional Materials are required. |                     |                   |  |  |  |  |  |  |
|                   |                                       |                     |                   |  |  |  |  |  |  |

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

| For Exam | iner's Use |
|----------|------------|
| 1        |            |
| 2        |            |
| 3        |            |
| 4        |            |
| 5        |            |
| 6        |            |
| 7        |            |
| 8        |            |
| 9        |            |
| Total    |            |

This document consists of 20 printed pages.



1 The Periodic Table shows all of the chemical elements arranged into groups and periods.

For Examiner's Use

Fig. 1.1 shows part of the Periodic Table. The letters in this table are **not** the normal chemical symbols of the elements.

|   | I | II |  |  |   |  |  | Ш | IV | V | VI | VII | 0 |
|---|---|----|--|--|---|--|--|---|----|---|----|-----|---|
| 1 |   |    |  |  |   |  |  |   |    |   |    |     | Α |
| 2 | F |    |  |  |   |  |  |   |    |   |    |     | Е |
| 3 | С |    |  |  |   |  |  | Н |    |   |    |     |   |
| 4 | G |    |  |  | В |  |  |   |    |   |    | D   |   |

Fig. 1.1

| (a) | Complete the    | statements     | below   | using   | letters, | chosen   | from   | A to | o <b>H</b> , | which   | refer | to |
|-----|-----------------|----------------|---------|---------|----------|----------|--------|------|--------------|---------|-------|----|
|     | elements in Fig | g. 1.1. Letter | s may l | be used | d once,  | more tha | an onc | e or | not a        | at all. |       |    |

| • | The element shown as letteris an alkali metal in period 3.                                                                                                                      |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | The element shown as letteris the noble gas with the lowest density.                                                                                                            |
| • | The three elements shown as letters, and                                                                                                                                        |
|   | have very similar chemical properties to each other.                                                                                                                            |
| • | The element shown as letteris sometimes used as a catalyst. [4]                                                                                                                 |
|   | e elements sodium and sulphur are both oxidised when they burn in air to produce ium oxide and sulphur dioxide respectively.  Explain the meaning of the term <i>oxidised</i> . |
|   |                                                                                                                                                                                 |
|   | [1]                                                                                                                                                                             |

© UCLES 2008 0653/02/M/J/08

(b)

| (ii)  | Sodium oxide reacts with water to form solution <b>P</b> .                                             |   |  |  |  |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|--|--|
|       | Sulphur dioxide reacts with water to form solution <b>Q</b> .                                          |   |  |  |  |  |  |  |  |
|       | Predict and explain the colour of Universal Indicator solution when added to ${\bf P}$ and ${\bf Q}$ . |   |  |  |  |  |  |  |  |
|       | colour in P                                                                                            |   |  |  |  |  |  |  |  |
|       | explanation                                                                                            |   |  |  |  |  |  |  |  |
|       |                                                                                                        |   |  |  |  |  |  |  |  |
|       | colour in <b>Q</b>                                                                                     |   |  |  |  |  |  |  |  |
|       | explanation                                                                                            |   |  |  |  |  |  |  |  |
|       | [4                                                                                                     | ] |  |  |  |  |  |  |  |
| (iii) | Name the type of chemical reaction which occurs when solution ${f P}$ is added to solution ${f Q}$ .   | ) |  |  |  |  |  |  |  |
|       | [1                                                                                                     | ] |  |  |  |  |  |  |  |

**2** Fig. 2.1 shows the structure of the human thorax (seen from the front).

For Examiner's Use

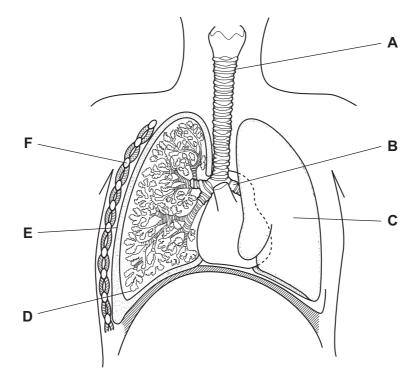



Fig. 2.1

| (a) | Giv   | re the <b>letter</b> of each of the following structures.                                                                                             |     |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | (i)   | the left bronchus                                                                                                                                     |     |
|     | (ii)  | a pleural membrane                                                                                                                                    |     |
|     | (iii) | a place where there are goblet cells and cilia                                                                                                        | [3] |
| (b) |       | s exchange takes place in the alveoli. When a person smokes for a number ars, the walls of the alveoli start to break down. This is called emphysema. | of  |
|     | (i)   | Name the process by which molecules of oxygen pass into the blood from talveoli.                                                                      | he  |
|     |       |                                                                                                                                                       | [1] |
|     | (ii)  | Explain why emphysema makes it more difficult for oxygen to get into the blood.                                                                       |     |
|     |       |                                                                                                                                                       |     |
|     |       |                                                                                                                                                       |     |
|     |       |                                                                                                                                                       | [2] |

(c) Oxygen is transported around the body in red blood cells. Fig. 2.2 is a diagram of a group of red blood cells.

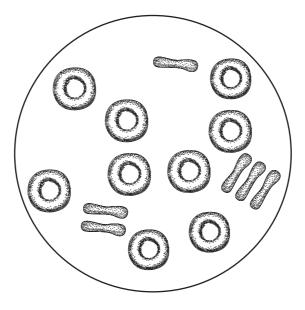



Fig. 2.2

|     | (i)  | State <b>one</b> difference, apart from their colour, between the appearance of red blo cells and white blood cells. | od      |
|-----|------|----------------------------------------------------------------------------------------------------------------------|---------|
|     |      |                                                                                                                      | [1]     |
|     | (ii) | What makes red blood cells look red?                                                                                 |         |
|     |      |                                                                                                                      | [1]     |
| (d) | Exp  | plain why body cells need a constant supply of oxygen.                                                               |         |
|     |      |                                                                                                                      |         |
|     |      |                                                                                                                      | <br>[2] |
|     |      |                                                                                                                      | [ک]     |

A man drives a golf ball with his club and it flies through the air for nearly 200 metres.

(a) (i) State the form of energy given to the ball by the club when the ball is hit.

[1]

(ii) State the type of energy gained by the ball as it rises into the air after being hit.

[1]

(b) As the golfer moves around the course in a golf cart, his movement is measured. The measurements are plotted on the graph in Fig. 3.1.

For Examiner's Use

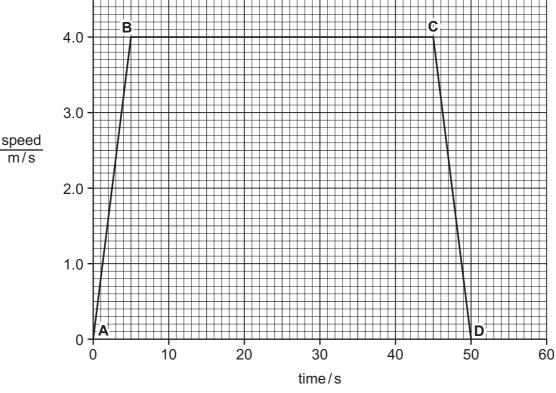



Fig. 3.1

A – B

.....
B – C

.....
C – D

(ii) What is the speed of the cart after 3 seconds?

\_\_\_\_\_m/s [1]

© UCLES 2008 0653/02/M/J/08

(i) Describe what is happening between

| (c) | The  | golfer hits the ball along the ground. It travels 6 m in                                                 | 3 s.            |     |
|-----|------|----------------------------------------------------------------------------------------------------------|-----------------|-----|
|     | Cal  | culate the average speed of the ball.                                                                    |                 |     |
|     | Sta  | te the formula that you use and show your working.                                                       |                 |     |
|     |      | formula                                                                                                  |                 |     |
|     |      |                                                                                                          |                 |     |
|     |      | working                                                                                                  |                 |     |
|     |      |                                                                                                          |                 |     |
|     |      |                                                                                                          |                 |     |
|     |      |                                                                                                          | m/s             | [2] |
| (d) | The  | golfer's bag of clubs has a mass of 6 kg.                                                                |                 |     |
|     | (i)  | Calculate the weight of the bag of clubs.                                                                |                 |     |
|     |      | Assume that the gravitational field strength on Earth                                                    | is 10N/kg.      |     |
|     |      |                                                                                                          | N               | [1] |
|     | /::\ | Calculate the work done by the golfer when the bag                                                       | in lifted 0.5 m |     |
|     | (ii) | Calculate the work done by the golfer when the bag  State the formula that you use and show your working |                 |     |
|     |      | formula                                                                                                  | ig.             |     |
|     |      | Tormula                                                                                                  |                 |     |
|     |      | working                                                                                                  |                 |     |
|     |      | <b>G</b>                                                                                                 |                 |     |
|     |      |                                                                                                          |                 |     |
|     |      |                                                                                                          | J               | [2] |
|     |      |                                                                                                          |                 |     |
|     |      |                                                                                                          |                 |     |
|     |      |                                                                                                          |                 |     |
|     |      |                                                                                                          |                 |     |

For

Examiner's Use

[2]

Kerosene is a mixture of hydrocarbons used as a fuel for aircraft and for lighting and cooking. (a) Kerosene is obtained from petroleum (crude oil) and is a liquid which boils in the range 150 °C − 200 °C. (i) Name the process used to separate kerosene from petroleum. (ii) State the important difference between the various compounds in petroleum which enables them to be separated by the process you have named in (i). (b) The light from a kerosene lamp is provided by the flame produced when kerosene burns in air. The lamp must be carefully designed and operated to ensure that most of the kerosene undergoes complete combustion. chimney allows gases to escape flame providing light kerosene lamp (i) Complete the **word** chemical equation for the complete combustion of kerosene. kerosene +

| (ii) | Describe <b>one</b> observation which shows that the reaction occurring in the keroser lamp is exothermic. |     |  |  |  |
|------|------------------------------------------------------------------------------------------------------------|-----|--|--|--|
|      |                                                                                                            |     |  |  |  |
|      |                                                                                                            | [1] |  |  |  |

(c) The full chemical symbol for carbon is shown below.

<sup>12</sup> C

Draw a diagram of a carbon atom. Label the nucleus and show the full electron configuration.

[2]

**5** Fig. 5.1 shows the quantity of carbon dioxide that was emitted to the atmosphere by a large industrial company, between 2000 and 2005.

For Examiner's Use

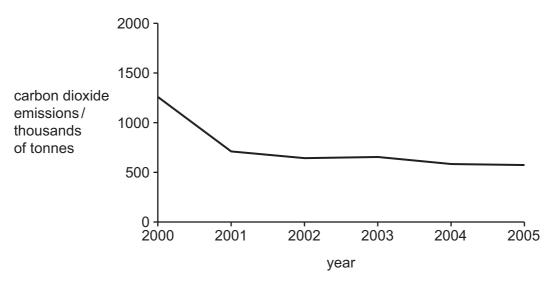
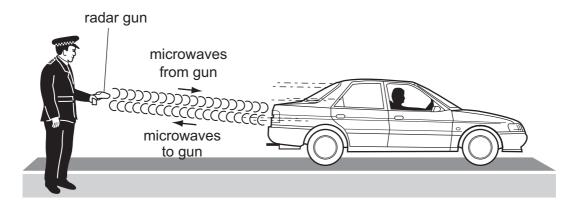



Fig. 5.1

| (a) | Describe how the company's carbon dioxide emissions changed between 2000 and 2005.                                          |
|-----|-----------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                             |
|     |                                                                                                                             |
|     | [2]                                                                                                                         |
| (b) | The company stated that these carbon dioxide emissions included those relating to the electricity that it used.             |
|     | Explain how using electricity can be responsible for emissions of carbon dioxide.                                           |
|     |                                                                                                                             |
|     | [2]                                                                                                                         |
| (c) | Apart from using less electricity, suggest <b>one</b> other way that the company could reduce its carbon dioxide emissions. |
|     |                                                                                                                             |
|     | [1]                                                                                                                         |


| (d) | In 1997, at a meeting in the city of Kyoto in Japan, many countries in the world signed an agreement to reduce their emissions of carbon dioxide. The agreement came into force in 2005. | For<br>Examiner's<br>Use |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|     | Explain why we need to reduce emissions of carbon dioxide.                                                                                                                               |                          |
|     |                                                                                                                                                                                          |                          |
|     | [2]                                                                                                                                                                                      |                          |
| (e) | Tropical rainforests can help to combat rising levels of carbon dioxide, because they take it from the air and use it in photosynthesis.                                                 |                          |
|     | Describe <b>one</b> other reason why we should try to conserve tropical rainforests.                                                                                                     |                          |
|     |                                                                                                                                                                                          |                          |
|     | [2]                                                                                                                                                                                      |                          |

6 (a) A policeman is using a radar gun to measure the speed of a car.

For Examiner's Use

The radar gun emits microwaves which hit the moving car and bounce back to a receiver in the radar gun.

A computer in the radar gun calculates the speed of the car.



(ii) The waves bounce off the car back towards the radar gun. What is this process called?

[1]

- **(b)** A car has two headlamps and two rear lamps. All four lamps are connected in parallel with each other across a 12 V battery.
  - (i) Complete the circuit diagram below to show how the four lamps are connected to the battery. Include one switch in your circuit which will control all four lamps.

[2]

For Examiner's Use

|     | (ii)                                                                                       | If the filament in one lamp breaks, the other three stay lit. Explain why this happens.                  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|
|     |                                                                                            |                                                                                                          |  |  |  |  |
|     |                                                                                            | [1]                                                                                                      |  |  |  |  |
| (c) |                                                                                            | 6.1 shows a spring. The spring is 10 cm long. A metal nut is hung on the spring the length is now 13 cm. |  |  |  |  |
|     |                                                                                            | 10 cm                                                                                                    |  |  |  |  |
|     | Fig. 6.1                                                                                   |                                                                                                          |  |  |  |  |
|     | Calculate the length of the spring if 3 <b>more</b> identical nuts are hung on the spring. |                                                                                                          |  |  |  |  |
|     | Sho                                                                                        | ow your working.                                                                                         |  |  |  |  |

cm

[2]

For Examiner's Use

| chlorophyll  cell wall  chloroplast                                                        | a green pigment found in some plant cells, which absorbs energy from sunlight  a partially permeable layer surrounding a cell  a fully permeable layer surrounding a plant cell  an organelle found in some plant cells |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cell wall                                                                                  | a fully permeable layer surrounding a plant cell  an organelle found                                                                                                                                                    |
|                                                                                            | layer surrounding a plant cell an organelle found                                                                                                                                                                       |
| chloroplast                                                                                |                                                                                                                                                                                                                         |
| · · · · · · · · · · · · · · · · · · ·                                                      | in some plant cells,<br>where photosynthesis<br>takes place                                                                                                                                                             |
|                                                                                            |                                                                                                                                                                                                                         |
| Plant leaves often contain starch, which is produced  Describe how the starch is produced. |                                                                                                                                                                                                                         |
|                                                                                            |                                                                                                                                                                                                                         |
|                                                                                            |                                                                                                                                                                                                                         |

(c) Fig. 7.1 shows one of the ways in which a plant called *Bryophyllum* reproduces. It grows new plantlets from its leaves.

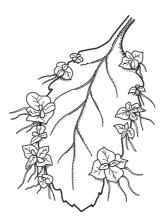



Fig. 7.1

| (i)  | Name the type of reproduction that is taking place.              |     |
|------|------------------------------------------------------------------|-----|
|      |                                                                  | [1] |
| (ii) | The new plants that are produced are clones of the parent plant. |     |
|      | Explain what is meant by the term <i>clone</i> .                 |     |
|      |                                                                  |     |
|      |                                                                  |     |
|      |                                                                  | [2] |
|      |                                                                  |     |

| (a) As                                                                                                                                                                          | A student wrote down some properties of alpha, beta and gamma radiations.                                                                              |       |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|
| Dra                                                                                                                                                                             | aw a line from each property to the correct radiation.                                                                                                 | Use   |  |  |  |  |
|                                                                                                                                                                                 | stopped by paper alph                                                                                                                                  | na    |  |  |  |  |
|                                                                                                                                                                                 | contains negatively charged particles                                                                                                                  |       |  |  |  |  |
| passe                                                                                                                                                                           | es through several centimetres of lead bet                                                                                                             | a     |  |  |  |  |
| р                                                                                                                                                                               | passes through paper but stopped by a few millimetres of aluminium                                                                                     |       |  |  |  |  |
|                                                                                                                                                                                 | has no mass gam                                                                                                                                        | ma    |  |  |  |  |
|                                                                                                                                                                                 |                                                                                                                                                        | [3]   |  |  |  |  |
| (b) (i)                                                                                                                                                                         | (b) (i) Gamma radiation can be used to sterilise surgical instruments. What property of gamma radiation makes it suitable for this purpose?            |       |  |  |  |  |
|                                                                                                                                                                                 |                                                                                                                                                        | [1]   |  |  |  |  |
| (ii)                                                                                                                                                                            | State <b>one</b> other use for radiation from a radioactive source.                                                                                    |       |  |  |  |  |
|                                                                                                                                                                                 |                                                                                                                                                        |       |  |  |  |  |
|                                                                                                                                                                                 |                                                                                                                                                        | [1]   |  |  |  |  |
| (c) In an experiment a radiation detector was set up and used to measure background radiation. The background radiation in the laboratory was found to be 40 counts per minute. |                                                                                                                                                        |       |  |  |  |  |
| (i)                                                                                                                                                                             | What is background radiation?                                                                                                                          |       |  |  |  |  |
|                                                                                                                                                                                 |                                                                                                                                                        |       |  |  |  |  |
|                                                                                                                                                                                 |                                                                                                                                                        | [1]   |  |  |  |  |
| (ii)                                                                                                                                                                            | State <b>one</b> source of background radiation.                                                                                                       |       |  |  |  |  |
|                                                                                                                                                                                 |                                                                                                                                                        | [1]   |  |  |  |  |
| (iii)                                                                                                                                                                           | A radioactive source was placed near the detector and a reading of 1200 of per minute was recorded. What was the count rate of the radioactive source? | ounts |  |  |  |  |
|                                                                                                                                                                                 | counts per minute                                                                                                                                      | [1]   |  |  |  |  |

**9** Fig. 9.1 shows apparatus which can be used to reduce copper oxide to copper.

For Examiner's Use

Copper oxide is a black powder and during the reaction metallic copper forms inside the reaction tube.

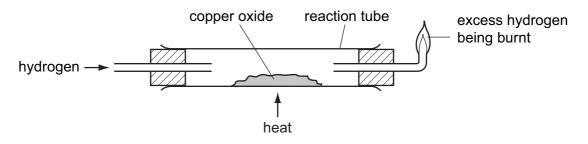
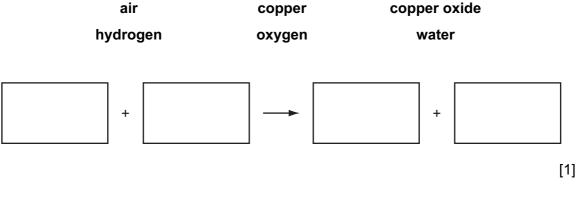




Fig. 9.1

(a) (i) Select from the list of substances below to complete the word equation for the reaction in Fig. 9.1.



(ii) Describe **one** piece of evidence which would show that copper had been formed in this reaction.

| [1] |
|-----|

**(b)** When a student carried out the reaction in Fig. 9.1 she realised the material left inside the reaction tube was a mixture of metallic copper and unreacted copper oxide.

For Examiner's Use

In order to separate the metallic copper, she stirred the material from the reaction tube with warm dilute sulphuric acid for several minutes. She then filtered the mixture as shown in Fig. 9.2.

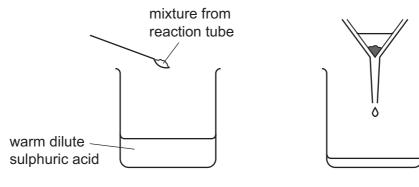



Fig. 9.2

|     | (i)  | Name the copper compound formed when sulphuric acid reacts with copper oxide.                                                              |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------|
|     |      | [1]                                                                                                                                        |
|     | (ii) | The copper compound you have named in (i) is soluble.                                                                                      |
|     |      | Explain why the method shown in Fig. 9.2 is successful in separating metallic copper from the original mixture of copper and copper oxide. |
|     |      |                                                                                                                                            |
|     |      |                                                                                                                                            |
|     |      |                                                                                                                                            |
|     |      | [2]                                                                                                                                        |
| (c) | Cop  | oper oxide is a compound of a metal and a non-metal.                                                                                       |
|     | (i)  | Name the type of chemical bonding in copper oxide.                                                                                         |
|     |      | [1]                                                                                                                                        |
|     | (ii) | Explain why there is a strong force of attraction between the copper and oxide particles in copper oxide.                                  |
|     |      |                                                                                                                                            |
|     |      |                                                                                                                                            |
|     |      | [2]                                                                                                                                        |

(d) Metallic copper can also be obtained by electrolysis.



Fig. 9.3

Describe what would be seen at each of the electrodes when the electrolysis shown in Fig. 9.3 is carried out.

| at the positive electrode |     |
|---------------------------|-----|
| at the negative electrode |     |
|                           | [2] |

© UCLES 2008 0653/02/M/J/08

DATA SHEET
The Periodic Table of the Elements

|       | 0 | 4 <b>He</b> Helium | 20<br>Neon<br>10<br>40<br>Ar<br>Argon  | 84<br><b>K</b> rypton<br>36        | 131<br><b>Xe</b><br>Xenon           | Rn<br>Radon<br>86                 |                             | 175<br><b>Lu</b><br>Lutetium<br>71     | Lr<br>Lawrencium<br>103                                                       |
|-------|---|--------------------|----------------------------------------|------------------------------------|-------------------------------------|-----------------------------------|-----------------------------|----------------------------------------|-------------------------------------------------------------------------------|
|       |   |                    | 19 Fluorine 9 35.5 <b>C 1</b>          | 80 <b>Br</b> Bromine 35            | 127 <b>I</b> lodine 53              | At<br>Astatine<br>85              |                             | <b>Yb</b> Ytterbium 70                 | Nobelium                                                                      |
|       | 5 |                    | 16<br>Oxygen<br>8<br>32<br>S<br>Suphur | 79 Selenium 34                     | 128<br><b>Te</b><br>Tellurium<br>52 | Po<br>Polonium<br>84              |                             | 169<br><b>Tm</b><br>Thullum<br>69      | Md<br>Mendelevium<br>101                                                      |
|       | > |                    | Nitrogen 7 31 <b>P</b> Phosphorus 15   | 75<br><b>As</b><br>Arsenic<br>33   | Sb<br>Antimony<br>51                | 209<br><b>Bi</b><br>Bismuth       |                             | 167<br><b>Er</b><br>Erbium<br>68       | Fm<br>Fermium                                                                 |
|       | ≥ |                    | 12 Carbon 6 Silicon 14                 | 73<br><b>Ge</b><br>Germanium<br>32 | <b>Sn</b> Tin                       | 207 <b>Pb</b> Lead                |                             | 165<br><b>Ho</b><br>Holmium<br>67      | <b>Es</b><br>Einsteinium<br>99                                                |
|       | = |                    | 11  B Boron 5 27 A1 Auminium 13        | 70 <b>Ga</b> Gallium 31            | 115<br><b>In</b><br>Indium<br>49    | 204 <b>T 1</b> Thallium           |                             | 162<br><b>Dy</b><br>Dysprosium<br>66   | Cf<br>Californium<br>98                                                       |
|       |   |                    |                                        | 65 <b>Zn</b> Zinc 30               | Cd<br>Cadmium<br>48                 | 201<br><b>Hg</b><br>Mercury<br>80 |                             | 159<br><b>Tb</b><br>Terbium<br>65      |                                                                               |
| Group |   |                    | ,                                      | 64<br><b>Cu</b><br>Copper<br>29    | 108<br><b>Ag</b><br>Silver<br>47    | 197<br><b>Au</b><br>Gold          |                             | Gd<br>Gadolinium<br>64                 | Cm<br>Curium<br>96                                                            |
|       |   |                    |                                        | 59 <b>Nicke</b> l 28               | 106<br>Pd<br>Palladium<br>46        | 195 <b>Pt</b> Platinum 78         |                             | 152<br><b>Eu</b><br>Europium<br>63     | Am<br>Americium<br>95                                                         |
|       |   |                    |                                        | 59 <b>Co</b> Cobalt                | 103 <b>Rh</b> Rhodium 45            | 192 <b>Ir</b> Indium              |                             | Samarium 62                            | <b>Pu</b> Plutonium 94                                                        |
|       |   | 1 Hydrogen         |                                        | 56<br>Fe<br>Iron                   | Ruthenium                           | 190<br><b>Os</b><br>Osmium<br>76  |                             | Pm<br>Promethium<br>61                 | Neptunium                                                                     |
|       |   |                    |                                        | Mn<br>Manganese<br>25              | Tc<br>Technetium                    | 186<br><b>Re</b><br>Rhenium<br>75 |                             | Neodymium 60                           | 238<br><b>U</b><br>Uranium<br>92                                              |
|       |   |                    |                                        | Cr<br>Chromium<br>24               | 96<br><b>Mo</b><br>Molybdenum<br>42 | 184<br><b>W</b><br>Tungsten<br>74 |                             | 141<br><b>Pr</b><br>Praseodymium<br>59 | Pa<br>Protactinium<br>91                                                      |
|       |   |                    |                                        | 51<br>V<br>Vanadium<br>23          | 93<br>Niobium<br>41                 | 181 <b>Ta</b> Tantalum 73         |                             | 140 <b>Ce</b> Cerium                   | 232<br><b>Th</b><br>Thorium                                                   |
|       |   |                    |                                        | 48 <b>Ti</b> Titanium              | 2 <b>r</b> Zirconium 40             | 178<br><b>Hf</b><br>Hafnium<br>72 |                             |                                        | iic mass<br>ool<br>iic) number                                                |
|       |   |                    |                                        | 45<br><b>Sc</b><br>Scandium<br>21  | 89 <b>×</b> Yttrium 39              | 139 <b>La</b><br>Lanthanum s      | 227 <b>Ac</b> Actinium 89   | series<br>eries                        | a = relative atomic mass <b>X</b> = atomic symbol  b = proton (atomic) number |
|       | = |                    | Be Beryllium 4 24 Mg Magnesium 12      | 40 <b>Ca</b> Calcium               | Strontium                           | 137 <b>Ba</b> Barium 56           | 226 <b>Ra</b> Radium 88     | *58-71 Lanthanoid series               | « × ¤                                                                         |
|       | _ |                    | 7                                      | 39<br><b>K</b><br>Potassium        | Rb Rubidium                         | 133<br>Csesium<br>55              | <b>Fr</b><br>Francium<br>87 | *58-71 L;<br>190-103 ,                 | Key                                                                           |

The volume of one mole of any gas is 24 dm<sup>3</sup> at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.