

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME			
	CENTRE NUMBER	CANDIDATE		
* 6 0	COMBINED SC	IENCE		0653/02
8	Paper 2 (Core)		May	/June 2007
4 8 0 3 3 6	Candidates ans No Additional M	wer on the Question Paper. aterials are required.	1 nour	15 minutes
* 🚃	READ THESE I	NSTRUCTIONS FIRST		
	Write your Centu Write in dark blu You may use a	e number, candidate number and name on all the work you hand in. or black pen. soft pencil for any diagrams, graphs, tables or rough working.		
	Do not use stap DO NOT WRITE	For Exam	iner's Use	
	Answer all ques	tions	1	
	A copy of the Pe	priodic Table is printed on page 20.	2	
	At the end of the	examination, fasten all your work securely together.	3	
	question.		4	
			5	
			6	
			7	
			8	
			9	
			Total	

This document consists of 18 printed pages and 2 blank pages.

BLANK PAGE

1 Fig. 1.1 shows a vertical section through a human heart, drawn as though the person is facing you.

(a) Name the parts of the heart labelled **A**, **B** and **C**.

Α	
В	
С	[3]

- (b) (i) Use a pencil to lightly shade in the places in Fig. 1.1 where there is oxygenated blood.
 - (ii) Where does the blood become oxygenated?
 - [1]
- (c) On the diagram, draw **two** arrows to show how blood travels through the left hand side of the heart. [1]
- (d) The heart muscle is supplied with blood through the coronary arteries.

Explain why a blockage in these arteries can cause a heart attack.

[2]

			4	For
2	Fig.	. 2.1	shows the structure of an atom of an element Q .	Use
			Fig. 2.1	
	(a)	(i)	Label the particles shown in Fig. 2.1. [3]	
		(ii)	Use the Periodic Table on page 20 to find the chemical symbol of element ${f Q}$, and explain your answer.	
			chemical symbol of Q	
			explanation	
			[2]	
	(b)	Fig gas	2.2 shows calcium metal reacting in water which contains Universal Indicator. The produced during the reaction was tested as shown.	
			Fig. 2.2	
		(i)	Name the gas produced in this reaction.	
			[1]	

- (ii) State and explain the colour change of the Universal Indicator during the reaction.
- (c) The piece of iron in Fig. 2.3 will take part in a chemical reaction which involves water.

State two ways in which the reaction of iron in Fig. 2.3 is different from the reaction of calcium in Fig. 2.2.

1.	
2.	
	[2]

For

Use

For Examiner's Use

4 In Mexico, some areas of tropical rainforest have been cleared for growing cacao trees. Beans from cacao trees are used for making chocolate. The beans are seeds, and they develop from fertilised flowers.

Bats are flying mammals. Table 4.1 shows information about the numbers of bats found in an undisturbed tropical rainforest and in a cacao plantation.

Table 4.1

habitat	number of different species of bats	number of bat species found only in that habitat	number of individual bats
undisturbed rainforest	27	14	423
cacao plantation	21	1	644

(a) Which habitat has the higher species diversity of bats?

Explain your answer.

habitat		
explanation	on	[1]

(b) Using the data in Table 4.1, suggest **one** reason, other than species diversity, why leaving some areas of tropical rainforests undisturbed is important for the conservation of bats.

 [1]

(c) Some bats feed on nectar.

9

(i) How might this explain the results for the numbers of individual bats in the two habitats?

.....[1] (ii) Explain how bats could help to increase the yield of beans from a cacao plantation. [2] (d) Complete these sentences, using some of the words in the list. clones genetically not sexually unhealthy zygotes Cacao trees can reproduce ______, using flowers and making seeds. different from each other. The new trees that are produced are Farmers can propagate cacao trees asexually. The new trees that are produced are [3] (e) Farmers allow other plants to grow underneath the cacao trees. Explain how this could help to reduce soil erosion. [2] _____

For Examiner's Use

5 Lead bromide is a compound. It can be broken down into its elements by using the apparatus shown in Fig. 5.1.

Fig. 5.1

(a) (i)	Name the process shown in Fig. 5.1.	
		[1]
(ii)	Name the non-metallic element which is produced in this process.	
		[1]
(iii)	Explain why the lead bromide shown in Fig. 5.1 has to be molten in order for the process to work.	the
		[1]
(iv)	Is electrode A in Fig. 5.1 the anode or the cathode?	
	Explain your answer.	
		[1]

(b) A process similar to that in Fig. 5.1 is used in the chemical industry to produce the important element chlorine. (i) The formula of the molecules in chlorine gas is Cl_2 . Explain what is meant by this formula. [2] (ii) Chlorine is used to treat water supplies. Explain this use of chlorine.[1] (iii) Chlorine reacts with aluminium to form aluminium chloride. The symbolic equation for this reaction is shown below. Complete the balancing of this equation. Cl₂ 2 Al $2 AlCl_3$ + [1]

6 (a) Fig. 6.1 shows a simple circuit containing two identical lamps.

Ammeter A_1 reads 0.15 A.

Write down the readings on

ammeter A ₂ ,	
ammeter A ₃ .	

(b) Fig. 6.2 shows an electricity generating station.

Fig. 6.2

- (i) Name two fossil fuels which could be burned in the furnace to heat water in the boiler.
 - 1.

 2.

[2]

[1]

(ii) Complete the energy transfer statements below.

In the furnace ________ energy is converted into heat energy.

In the turbine the energy in the steam is converted into the

energy of the turbine.

The generator converts kinetic energy into ______ energy. [3]

(iii) The electrical output from a power station is at 25000 V. The voltage is stepped up to 400000 V by a transformer. The number of turns on the primary coil is 20000.

Calculate the number of turns on the secondary coil.

State the formula that you use and show your working.

formula used

working

turns [3]

(iv) Why does the electrical output from this power station have to be a.c.?

[1]

Examiner's Fig. 7.1 shows a car in motion. The energy which is needed to make the car move comes from the burning of a mixture of air and fuel in the engine. air taken into the engine mixture of exhaust gases Fig. 7.1 (a) Air is a mixture of gases. (i) Which gas makes up the greatest percentage of the air? [1] (ii) Describe one difference between a mixture of two gases and a compound formed from two gases.[1] (b) In some modern cars, two fuels are used. One of these is hydrogen gas and the other is gasoline, a mixture of hydrocarbons. Only one fuel is used at a time. (i) Explain why the fuel is said to be oxidised in the engine.[1] (ii) Suggest why, when hydrogen is used, the exhaust gases are not toxic (poisonous), but when gasoline is used the exhaust gases are toxic. [2]

For

Use

		15	For Examiner's
	(iii)	Describe a chemical test which could be used to show that the exhaust gases contain carbon dioxide.	Use
		[2]	
(c)	The	e car battery contains sulphuric acid.	
	(i)	State the chemical formula of sulphuric acid.	
		[1]	
	(ii)	Underline one of the following substances to show which could be used to neutralise a spillage of sulphuric acid safely .	
	so	odium sodium carbonate sodium chloride sodium sulphate [1]	

[2]

(b) Fig. 8.1 shows a student carrying out an experiment to find the speed of sound in air.

Fig. 8.1

She stood 300 m from the edge of a cliff and made a loud noise. The echo reached her 2.0 s later.

Calculate the speed of sound in air using these results.

State the formula that you use and show your working.

formula used

working

_____m/s [2]

- (c) A sound has a frequency of 500 Hz.
 - (i) Explain the meaning of the term *frequency*.

- [1]
- (ii) State the approximate range of audible frequencies detected by the normal human ear.

[1]

(d) Fig. 8.2 shows the oscilloscope trace of two different sounds, **P** and **Q**. The settings on the oscilloscope are exactly the same for both.

State two ways in which sound P differs from sound Q.

 1.

 2.

 [2]

BLANK PAGE

	0	¹ um		0	e	uos	0	2	uoß	4	۲	pton	31	e	non		Ľ	uopi			75	ŗ	atium		5	ancium
		* - *	7		2	10 N	4	4	18 18		<u>×</u>	36 Kry	-	×	54 Xe			Rа 86			-		71 71		_	Lawre 103
	,			19	ш	Fluorine 9	35.5	CI	Chlorine 17	80	Å	Bromine 35	127	Ι	lodine 53		At	Astatine 85			173	۲b	Ytterbium 70		٩	Nobelium 102
	5			16	0	Oxygen 8	32	S	Sulphur 16	62	Se	Selenium 34	128	Te	Tellurium 52		Ро	Polonium 84			169	ш	Thulium 69		Md	Mendelevium 101
	>			14	z	Nitrogen 7	31	₽	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	Bi	Bismuth 83			167	Ъ	Erbium 68		Еm	Fermium 100
	≥			12	ပ	Carbon 6	28	Si	Silicon 14	73	Ge	Germanium 32	119	Sn	50 Tin	207	Pb	Lead 82			165	Ч	Holmium 67		Es	Einsteinium 99
				11	В	Boron 5	27	Al	Auminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	Τl	Thallium 81			162	D	Dysprosium 66		ç	Californium GR
										65	Zn	Zinc 30	112	Cd	Cadmium 48	201	Hg	Mercury 80			159	Tb	Terbium 65		BĶ	Berkelium 97
										64	Cu	Copper 29	108	Ag	Silver 47	197	Ρn	Gold 79			157	Gd	Gadolinium 64		Cm	Curium 96
dno										59	ïZ	Nickel 28	106	106 Paladum 195 78 Platinum 78	Eu	Europium 63		Am	Americium 95							
Gro								59 Cobait 27 Cobait 103 103 103 192 192 192 192 17 192		150	Sm	Samarium 62		Pu	Plutonium 94											
		Hydrogen	-							56	Бе	lron 26	101	Ru	Ruthenium 44	190	os	Osmium 76				Pm	Promethium 61		٩N	Neptunium 93
										55	Mn	Manganese 25		Lc	Technetium 43	186	Re	Rhenium 75			144	Nd	Neodymium 60	238	D	Uranium 92
										52	ບັ	Chromium 24	96	Мо	Molybdenum 42	184	≥	Tungsten 74			141	Pr	Praseodymium 59		Ра	Protactinium 91
										51	>	Vanadium 23	93	ЧN	Niobium 41	181	Та	Tantalum 73			140	Ce	Cerium 58	232	Ч	Thorium 90
										48	Ħ	Titanium 22	91	Zr	Zirconium 40	178	Ηf	Hafnium 72						lic mass	loc	iic) number
			,				1			45	Sc	Scandium 21	68	≻	Yttrium 39	139	La	Lanthanum 57 *	227 A C	Actinium 89	eorioe	ariae	2010	= relative atom	= atomic symt	= proton (atom
	=			6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	s	Strontium 38	137	Ba	Barium 56	226 D.a	Radium 88	bione dta e	Actinoid e		a a	×	р
	_			7	:-	Lithium 3	23	Na	Sodium 11	39	¥	Potassium 19	85	Rb	Rubidium 37	133	Cs	Caesium 55	ů	Francium 87	58-711	00-103 ((ey	q

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.