$\qquad$
$\square$

# International General Certificate of Secondary Education CAMBRIDGE INTERNATIONAL EXAMINATIONS COMBINED SCIENCE <br> 0653/5 

PAPER 5 Practical Test
OCTOBER/NOVEMBER SESSION 2002
1 hour 30 minutes

Candidates answer on the question paper. Additional materials: As listed in Instructions to Supervisors.

TIME 1 hour 30 minutes

## INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided on the question paper
You will need to set up the experiment for Question 1 at the start of the examination. While the experiment is left for at least 30 minutes you are advised to proceed with another question.

## INFORMATION FOR CANDIDATES

The number of marks is given in brackets [ ] at the end of each question or part question. Chemical practical notes for this paper are printed on page 12.

| FOR EXAMINER'S USE |  |
| :---: | :---: |
| $\mathbf{1}$ |  |
| 2 |  |
| 3 |  |
| TOTAL |  |

[^0]
## Before you begin the examination please make sure you have read the instructions on the front cover of the question paper.

1 This question is about osmosis. Osmosis is the net (overall) movement of water from a solution of higher water potential into a solution of lower water potential through a partially permeable membrane.

Prepare four chips, from the potato provided, of length 8.0 cm and approximately 0.5 cm wide (see Fig. 1.1). Use a sharp knife or scalpel and a suitable cutting surface. You must cut the length as accurately as you can to 8.0 cm .


Fig. 1.1

- Put four test-tubes into a test-tube rack.
- Put each chip into a separate test-tube.
- Add solution $\mathbf{A}$ to your first two test-tubes. Add enough of the solution to cover your chips. Do not worry if your chips float. Label these tubes with the letter A.
- In the same way add solution $\mathbf{B}$ to your remaining two test-tubes. Label these tubes with the letter $\mathbf{B}$.
- You must leave these chips for at least 30 minutes. It does not matter if they are left for longer than this. During this time move on to another question.
(a) After at least 30 minutes remove your chips from solution $\mathbf{A}$, quickly dry them with a paper towel, and measure their new length.
(i) new length of first chip .cm
new length of second chip .cm
(ii) Work out the average length of the chips after being in solution $\mathbf{A}$.
$\qquad$
$\qquad$
(iii) Using this average length, calculate the percentage change in size.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) Now remove your chips from solution
B. Dry them quickly with a paper towel and carefully measure their length.
new length of third chip cm
new length of fourth chip $\qquad$ cm
(c) Using your knowledge of osmosis, and the results of your experiment, decide how the water potentials of the solutions $\mathbf{A}$ and $\mathbf{B}$ compare with the water potentials of the potato cells. Give your reason in each case.
solution A
$\qquad$
$\qquad$
$\qquad$
solution B
$\qquad$
$\qquad$
$\qquad$

2 You are going to find the energy change when a certain mass of solid $\mathbf{Z}$ dissolves in water in a beaker. The first step is to find how much heat is stored by the $100 \mathrm{~cm}^{3}$ glass beaker.
(a) (i) Weigh the $100 \mathrm{~cm}^{3}$ glass beaker to the nearest gram. Record the mass in the space provided and convert this mass into kilograms.
mass of beaker in grams $=$ $\qquad$ .g
mass of beaker in kilograms $=$ .kg
(ii) Multiply the mass of the beaker in kg by 670. This gives the heat energy, $\mathbf{X}$ joules, for each degree Celsius change.

$$
\mathbf{X}=
$$

$\qquad$
(b) (i) Weigh between 2.5 g and 3.5 g of solid $\mathbf{Z}$. This must be accurately weighed to the nearest 0.1 g . Write down all weighings you make and record the accurate mass of $\mathbf{Z}$.

$$
\begin{equation*}
\text { mass of } \mathbf{Z}= \tag{2}
\end{equation*}
$$

(ii) Using a measuring cylinder, measure out $25 \mathrm{~cm}^{3}$ of cold water and pour into the $100 \mathrm{~cm}^{3}$ beaker.

Measure and record the temperature $T_{1}$ of this water, to the nearest $0.5^{\circ} \mathrm{C}$.
$T_{1}$ ${ }^{\circ} \mathrm{C}$

Add the weighed solid $\mathbf{Z}$ to the water and stir until it completely dissolves.
Read and record $T_{2}$, the lowest temperature reached.
$T_{2}$ ${ }^{\circ} \mathrm{C}$

Calculate the temperature change, $\Delta T$.

$$
\Delta T=
$$

(iii) Use your results from (a)(ii) and (b)(ii) to calculate the total number of joules absorbed by the dissolving of $\mathbf{Z}$ in water, using the formula below.
total heat energy absorbed $=\Delta T(\mathbf{X}+105)$
(c) Is the dissolving of $\mathbf{Z}$ in water endothermic or exothermic? Explain your answer.
$\qquad$
$\qquad$

3 You are going to find out how the time taken for a reaction varies with temperature. The reaction produces a precipitate which will make the solution cloudy. See Fig.3.1.

## Take care when handling hot liquids

(a) Mark a large cross in the centre of a piece of paper. The flask will be placed on this paper. You will look down at the cross through the solution. When the cross disappears, the reaction has finished.


Fig. 3.1
(b) - Using the larger measuring cylinder, measure $50 \mathrm{~cm}^{3}$ of the solution labelled $\mathbf{H}$ and pour it into the flask.

- Warm the contents of the flask to $35^{\circ} \mathrm{C}$ (this will only take a few seconds). Place the flask over the cross on the paper.
- Using the smaller measuring cylinder, measure $5 \mathrm{~cm}^{3}$ of the solution labelled $\mathbf{J}$ and add it to the flask containing solution H. Start the clock and swirl the flask to mix the contents.
- When you can no longer see the cross on the paper, stop the clock.
- Record the starting temperature and time in seconds, in the table Fig. 3.2.

| starting temperature $/{ }^{\circ} \mathrm{C}$ | time for cross to disappear/s |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Fig. 3.2
(c) - Wash out the flask with water.

- Repeat the above procedure but heat solution $\mathbf{H}$ to $40^{\circ} \mathrm{C}$.
- Record the starting temperature and time in the table.
- Repeat three more times using an increased starting temperature each time. Do not exceed a starting temperature of $70^{\circ} \mathrm{C}$
(d) Plot a graph on the grid provided of time (vertical axis) against temperature. Label the temperature axis from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.
Draw a smooth curve through your points.

temperature $/{ }^{\circ} \mathrm{C}$
(e) Briefly describe how you would carry out an experiment at $0^{\circ} \mathrm{C}$ to find the reaction time.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

BLANK PAGE

BLANK PAGE

BLANK PAGE

## CHEMISTRY PRACTICAL NOTES

## Test for anions

| anion | test | test result |
| :--- | :--- | :--- |
| carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ | add dilute acid | effervescence, carbon dioxide <br> produced |
| chloride $\left(\mathrm{Cl}^{-}\right)$ <br> [in solution] | acidify with dilute nitric acid, then <br> add aqueous silver nitrate | white ppt. |
| nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$ <br> [in solution] | add aqueous sodium hydroxide, <br> then aluminium foil; warm carefully | ammonia produced |
| sulphate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ <br> [in solution] | acidify, then add aqueous barium <br> chloride or aqueous barium nitrate | white ppt. |

## Test for aqueous cations

| cation | effect of aqueous sodium hydroxide | effect of aqueous ammonia |
| :--- | :--- | :--- |
| ammonium $\left(\mathrm{NH}_{4}^{+}\right)$ | ammonia produced on warming | - |
| copper(II) $\left(\mathrm{Cu}^{2+}\right)$ | light blue ppt., insoluble in excess | light blue ppt., soluble in excess, <br> giving a dark blue solution |
| iron(II) $\left(\mathrm{Fe}^{2+}\right)$ | green ppt., insoluble in excess | green ppt., insoluble in excess |
| iron(III) $\left(\mathrm{Fe}^{3+}\right)$ | red-brown ppt., insoluble in excess | red-brown ppt., insoluble in excess |
| zinc $\left(\mathrm{Zn}^{2+}\right)$ | white ppt., soluble in excess, giving a <br> colourless solution | white ppt., soluble in excess, <br> giving a colourless solution |

## Test for gases

| gas | test and test result |
| :--- | :--- |
| ammonia $\left(\mathrm{NH}_{3}\right)$ | turns damp litmus paper blue |
| carbon dioxide $\left(\mathrm{CO}_{2}\right)$ | turns lime water milky |
| chlorine $\left(\mathrm{Cl}_{2}\right)$ | bleaches damp litmus paper |
| hydrogen $\left(\mathrm{H}_{2}\right)$ | 'pops' with a lighted splint |
| oxygen $\left(\mathrm{O}_{2}\right)$ | relights a glowing splint |


[^0]:    This question paper consists of 9 printed pages and 3 blank pages.

