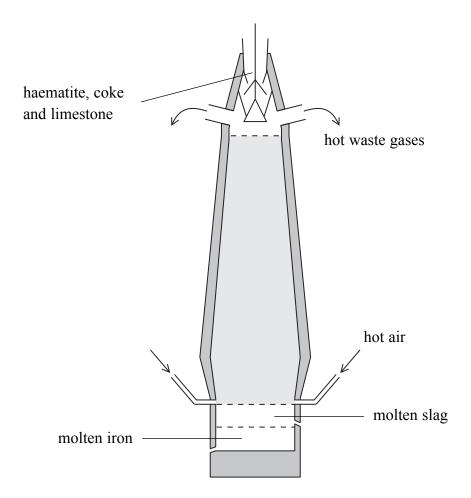
Centre No.					Pape	er Refei	ence			Surname	IIIIII	11(3)
Candidate No.			4	3	3	5	/	1	F	Signature		
		Reference(s)								Ex	aminer's us	se only
						•	4	•	7			
		onac	n J	ŁX	an	lln	at	lor		IGCSE Team	1 Leader's 1	use only
	Cl	hemis	stry									
	Pa	per 11	7								Question Number	
		'oui	A	04	Hio	n	Т	1	\ W			Diana
	r	Oui	IU	a)11	1	16			1	_
	Tu	esday	16 N	love	emb	er 2	010	- A	Afte	rnoon	2	
	Tir	ne: 1 h	our	30 ı	min	utes					3	
	111		ioui	<i>5</i> 0 1		aces					4	
	D.F. 4		1.6		4•	T.				,•	5	
	Nil	erials requi	rea for	exami	nation	$-\frac{10}{N}$		ciuaec	ı witn	question papers	6	
											7	
											8	
											9	
Instructions t			umber	candi	idata r	umba	r vou	curn	ama ai	nd initial(s) and your	10	
signature.	•		•	,			, ,			•		_
The paper refere Answer ALL th										rect question paper. estion paper.	11	
Show all stages	in any calcu	ulations an	d state	the un	its. Ĉ	alcula	tors m	ay be	used.			
Some questions answer, put a lin												
.												
Information f			The ma	rks for	r indiv	idual	nuesti	ons an	nd the	parts of questions		
are shown in ro	und bracket	s: e.g. (2) .			ingiv	Iddui	questi	ono un	ia tiic	parts of questions		
There are 11 qu There are 28 pa					nk nag	es are	indica	ated.				
A Periodic Tabl				J = 302	r C	, = •						
Advice to Car	ndidates											

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. $\hbox{$\bigcirc$}2010$ Edexcel Limited.

Write your answers neatly and in good English.

Turn over

Total


	0	Helium 2	20 Neon 10 10 40 Ar Argon	Krypton 36 38 Xenon 54 54 54 54 54 54 54 54 54 54 54 54 54	Radon 86	
	7		Fluorine 9 35.5 Chlorine 17 17 17 17 17 17 17 17 17 17 17 17 17		Astatine 85	
	9		Oxygen 8 8 Sulphur 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Selenium 34 128 Tellurium 55 55 55 55 55 55 55 55 55 55 55 55 55	Polonium 84	
	2		Nitrogen 7 31 31 Phosphorus	AS Renic 33 122 Sb Sb	209 Bismuth 83	
	4		Carbon Carbon Silicon	F	Pb Pb Pb	
	က		11 B Boron 5 Aluminium	Gallium Gallium 115	204 Thallium 81	
				Zn Zinc 30 30 112 Cddmium 48		
TABLE				Cu Copper 29 108 Ag A7		
. ODIC				Nickel Nickel 28 106 Palladium		
THE PERIODIC TABLE				S9 CO Cobalt 27 103 Rhodium P	 	
王				Fe F		ļ
	Group	Hydrogen		Mn Manganese 25 99 TC Tachnetium Ru	Henrium O	Key Relative atomic mass Symbol Name Atomic number
	Ō	Ť		Cr Cromium Mar 24 96 Molybdenum Tec	184 W Tungsten Rt	g v
				S1 Chromodolim Chromodolim Chromodolim Chromodolim Chromodolim Molyko		
					1	
				48 Ti Ti 22 22 91 Zirconium	Hafrium Hafrium 72	
			E Ę	Scandium Scandium 21 21 89 45 45 45 45 41 41 41 41 41 41 41 41 41 41 41 41 41		
	8		Beryllium 4 4 4 Mg Magnesium		Barium Barium S S S S S S S S S S S S S S S S S S S	
	-	_	Lithium 3 3 23 Sodium Sodium	Potassium 19 86 Rubidium 37 39	133 Caesium 55 Pr	
		Period 1	a 6	4 ro	9 /	

Use the Periodic Table on page 2 to help you answer this question. (a) How many elements are in Period 1? (1) (b) Identify an element that has a relative atomic mass of 40. (1) (c) Name an element that forms ions with a charge of -2. (1) (d) Give the symbol of an element that does not react.	
(b) Identify an element that has a relative atomic mass of 40. (c) Name an element that forms ions with a charge of -2. (d) Give the symbol of an element that does not react.	
(1) (b) Identify an element that has a relative atomic mass of 40. (c) Name an element that forms ions with a charge of -2. (d) Give the symbol of an element that does not react.	
(c) Name an element that forms ions with a charge of -2. (1) (d) Give the symbol of an element that does not react.	
(c) Name an element that forms ions with a charge of -2. (1) (d) Give the symbol of an element that does not react.	
(d) Give the symbol of an element that does not react.	
(d) Give the symbol of an element that does not react.	
(e) Identify the element which is in both Period 5 and Group 4.	
(1)	
(Total 5 marks)	

Comple	ata tha cantancas h	, salacting words from	, the boy		
		y selecting words from nce, more than once o			
Lacii w	ord may be used o	mee, more man once o	not at an.		
	different	electrons	identical		
	negative	neutrons	nucleus		
	positive	protons	shells		
(a) Ato	oms are made up o	f protons,		and electrons.	(1)
(b) Pro	otons are found in t	he	of an	atom.	(1)
(c) Ele	ectrons have a		charge.		(1)
(d) The	e mass number of a	an atom is the total nu	mber of		and
		in the atom.			(1)
(e) Iso	topes are atoms wi	th the same number of	f protons but diff	erent	
nuı	mbers of				(1)
(f) Iso	topes of the same	element have		chemical pro	
				(Total 6	marks)

3. The diagram shows how iron is extracted from haematite, a form of iron(III) oxide.

(a) (i) During this extraction process, coke (a form of carbon) burns. The reaction is exothermic.

Write the word equation for this reaction.	
	(1)
	(1

(ii) The heat produced by the above reaction causes the calcium carbonate to decompose.

Complete this word equation.

calcium carbonate \rightarrow calcium oxide +(1)

(b) (i) Rust i	is hydrated iron	n(III) oxide.
Place to rus		two boxes to show what must be present for a sample of iron
Ca	arbon dioxide	\boxtimes
	nitrogen	
	oxygen	
	salt	\boxtimes
	water	\boxtimes
	zinc	(2)
('') G 1	1: 0	
		made from steel, an alloy of iron.
State	one method use	ed to prevent the rusting of car bodies.
		(1)

(c) Some cars do not rust because they have bodies made of aluminium. Aluminium has many other uses.

The first box gives some uses of metals.

The second box gives some other properties of aluminium.

Complete the table by selecting **two** uses of aluminium from the first box and the properties on which these uses depend from the second box.

Uses of metals aircraft bodies cooking pans knives household wiring overhead power cables railway tracks

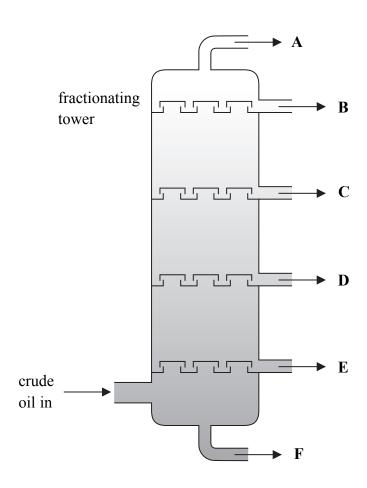
Properties of aluminium

good conductor of electricity

good conductor of heat

low density

Use of aluminium	Property on which that use depends
car bodies	does not corrode


(4) **Q3**

(Total 9 marks)

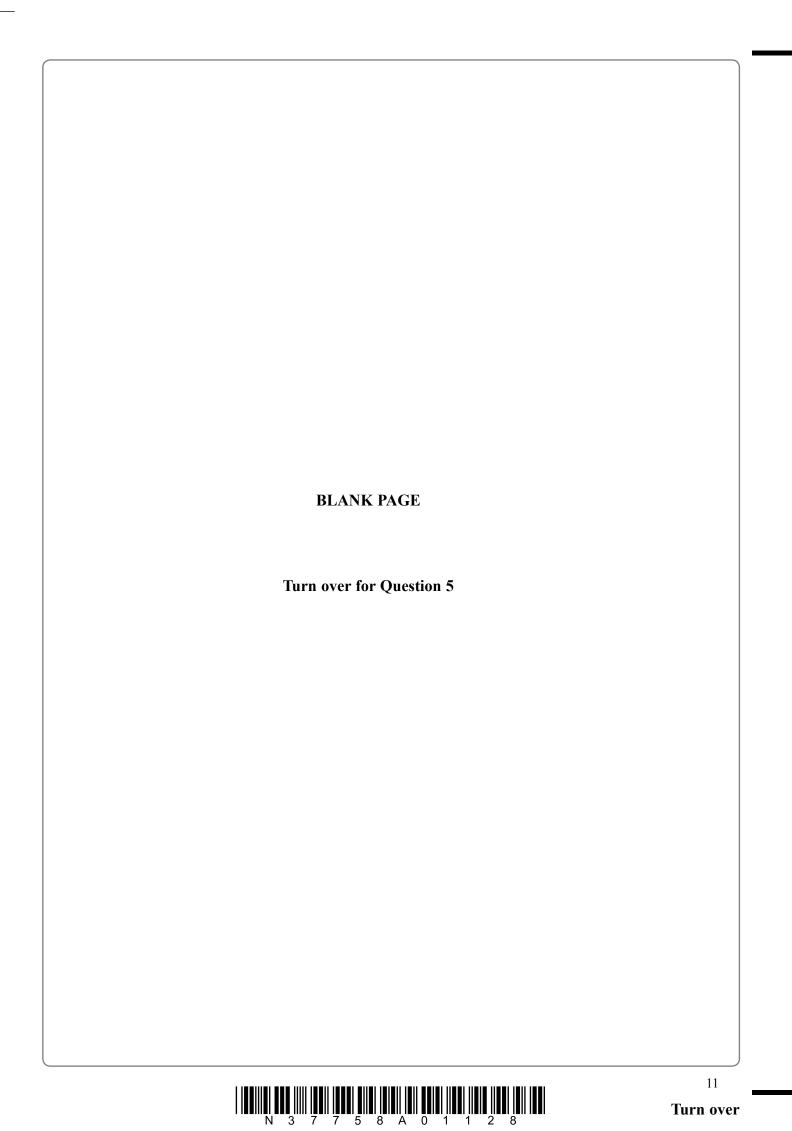
4. Crude oil is a complex mixture of hydrocarbons. It is separated into fractions by fractional distillation. The diagram shows a fractionating tower.

Leave blank

(a) Place a cross () in **one** box to show which statement is correct.

crude oil is heated before entering the fractionating tower \square

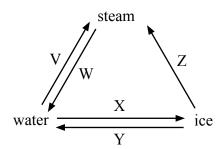
each fraction obtained is a single compound


the temperature is highest at the top of the fractionating tower \square

(1)

	A 🖾	tion that doe $\mathbf{B} \square$		×		X		\boxtimes	F	×		
	A 🖾	D 🖾	C		D		£		Г		(1)	
(ii)	The fract	tion with the	high	est bo	oiling p	ooint i	S					
	$\mathbf{A} \boxtimes$	В	C	X	D	X	E	X	F	×	(1)	
(iii) The fract	tion called b	itume	en is							(-)	
	A 🖾	В	C	X	D	X	E	×	F	×		
											(1)	
(iv) The liqui	d fraction w	ith th	e sho	rtest c	arbon	chains	s is				
	A ⊠	В	C	×	D	X	E	X	F	X	(1)	
) Th	e fractions	of crude oil	l have	man	v iises						()	
	mplete the		inuvc	, indi	y uses.	•						
	Name	of fraction						Us	se			
	g	asoline										
							8	viatio	n fuel			
	b	itumen										
											(2)	
											(3)	

9


(
1

(1)

5.	The three states	of matter	are solid,	liquid	and gas.
----	------------------	-----------	------------	--------	----------

The diagram shows the relationships between ice, water and steam.

a)	(i)	What is the name given to the change of state indicated by Y ?	
			(1)
	(ii)	Which letter indicates sublimation?	
			(1)
	(iii)	What must be provided for the change of state indicated by V to occur?	
			(1)
b)	In v	which state are water molecules not free to move around?	
	••••		(1)
c)	Wat	ter can be represented by the formula $H_2O(1)$.	
	Giv	re the formula, including state symbols, of:	
	(i)	ice	
			(1)
	(ii)	steam.	

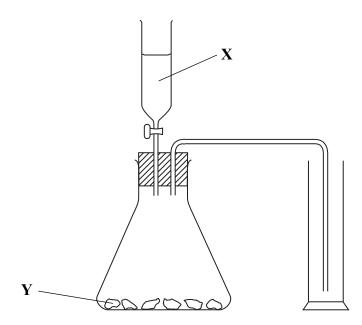
12

			(1)
	(ii)	Name the two changes of state that occur during this distillation.	
		First change of state	
		Second change of state	(2)
(e)	Wat	ter can be reacted with a metal to form hydrogen.	, ,
	(i)	Complete this word equation.	
		+ water → sodium hydroxide + hydrogen	(1)
	(ii)	The hydrogen gas was collected in a test tube.	
		What happens when a burning splint is placed at the mouth of the test tube?	1
			······· (1)
	(iii)	What colour is universal indicator in sodium hydroxide solution?	
			(1)
		(Total 12 ma	mlza)

6. (a) The pie chart shows the proportion by volume of the three most abundant gases in dry air.

Leave blank

(1)


(i) Which letter represents nitrogen?

A	X	В	X	C	X		

(ii) Which gas is represented by C?

		(1)

(b) Carbon dioxide can be prepared in the laboratory using the apparatus shown.

(i) Place crosses (\boxtimes) in **two** boxes to show the identity of **X** and of **Y**.

X is		Y is		
calcium carbonate	X	calcium carbonate	X	
calcium oxide	X	calcium oxide	X	
hydrochloric acid	X	hydrochloric acid	X	
sulphuric acid	X	sulphuric acid	X	
				(2)
gram shows carbon d	ioxide	gas being collected by down	ward d	elivery.

(ii) The diag

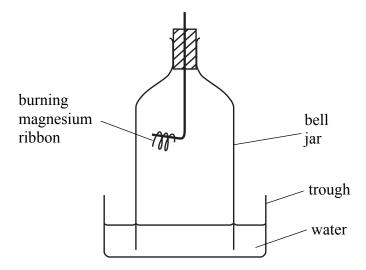
Place a cross (
) in one box to show the property of carbon dioxide on which this method of collection depends.

carbon	dioxide	is	less	dense	than	air	X

(1)

(iii) Carbon dioxide reacts with water to form a weak acid.

What colour change is observed when carbon dioxide is bubbled into a beaker containing water and universal indicator?


Start colour

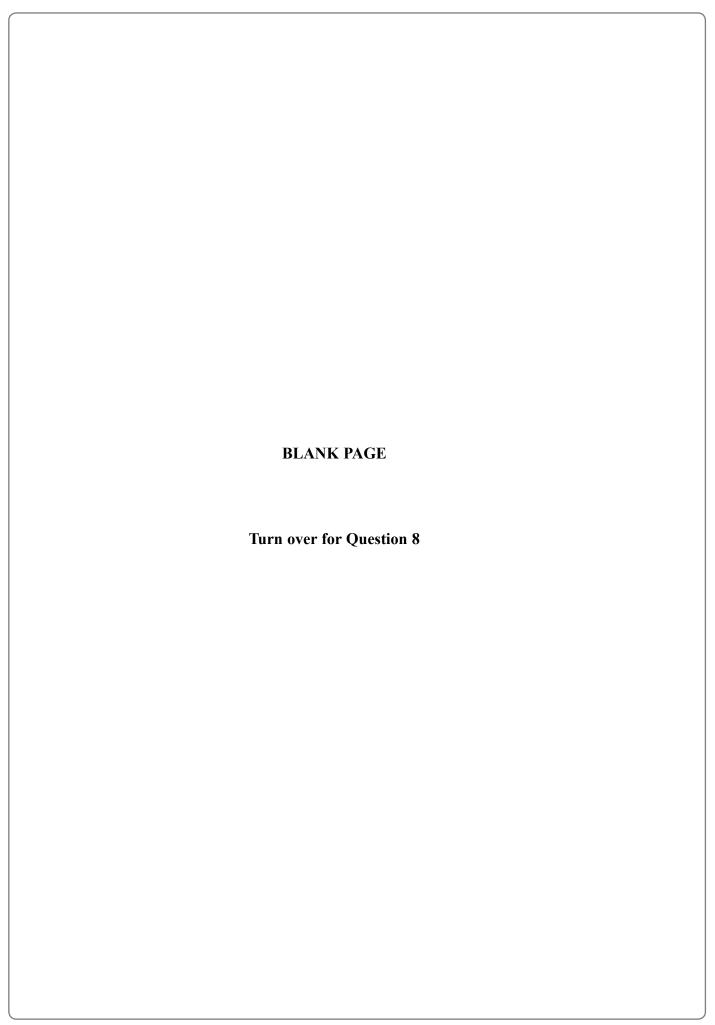
Finish colour(2)

(iv) State one industrial use of carbon dioxide.

(1)

(c) The following apparatus can be used to determine the percentage by volume of oxygen in the air.

The word equation for the reaction is


 $magnesium + oxygen \rightarrow magnesium oxide$

Has the magnesium been oxidised or reduced in this reaction? Explain your answer.

(1)

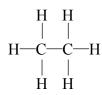
Leave blank (1) Oxygen	(d) At the start of the experiment the volume of air in the bell jar was 5.0 dm³. At the end of the experiment the water had risen up inside the bell jar. The volume of gas inside the bell jar was now 4.0 dm³. (i) Why did the water rise up inside the bell jar?
(2) Q6	(2) (Total 12 marks)
	TOTAL FOR SECTION A: 55 MARKS

	rogen Reactor Cooler	ammonia
a)	State three conditions used in the reactor.	
	1	
	2	
	3	(3)
b)	What change of state does the ammonia undergo in the cooler?	
		(1)
	Some of the ammonia formed in the Haber process is reacted with nitri ammonium nitrate.	
	(i) Write a chemical equation for this reaction.	
		(2)
	(ii) Give one major use of ammonium nitrate.	
	(TE	(1)
	(Te	otal 7 marks)

8. Copper, iron and zinc can be reactants or products in displacement reactions. These metals have different reactivities.

The table shows the observations made when a student added a small amount of each metal to a solution of the sulphate of one of the other metals.

Experiment	Reagents	Observations
1	copper + iron(II) sulphate	no change
2	copper + zinc sulphate	no change
3	iron + copper(II) sulphate	solution turns from blue to pale green solid turns from dark grey to pink-brown
4	iron + zinc sulphate	no change
5	zinc + copper(II) sulphate	solution turns from blue to colourless solid turns from light grey to pink-brown
6	zinc + iron(II) sulphate	solution turns from pale green to colourless solid turns from light grey to dark grey


(a)	In Experiment 1, why was there no reaction?	
		•••••
		(1)
(b)	In Experiment 3, which ion is responsible for the blue colour?	
		(1)
(c)	In Experiment 5, what is the pink-brown solid?	```
		(1)
(d)	In Experiment 6, why does the solid turn from light grey to dark grey?	
		•••••
		(1)

(e) Which of the three metals is the most reactive?		Leave blank
	(1)	
(f) When preparing for these experiments, the student for sulphate solution". To find out whether the solution coiron(III) sulphate he tested it by adding sodium hydroxide	ntained iron(II) sulphate or	
State the observation made, and identify the substance respif the bottle contained iron(II) sulphate solution.	consible for the observation,	
Observation		
Substance responsible		
	(2)	Q8
	(Total 7 marks)	

Leave	1
blank	

9.	The	e fori	mulae C_2H_6 and C_3H_8 represent two organic compounds.	
	(a)	Stat	te why these compounds are described as	
		(i)	hydrocarbons	
				(1)
		(ii)	saturated	
				(1)
	(b)	The	e compounds C ₂ H ₆ and C ₃ H ₈ are members of the same homologous series.	
		(i)	What is the name of this homologous series?	
				(1)
		(ii)	What is the general formula of this homologous series?	
				(1)
		(iii)	Other than having the same general formula, state two other characteristic members of the same homologous series.	es of
			1	

(c) The displayed formula of C_2H_6 is

Draw the displayed formula of C_3H_8 .

(1)

(2)

(d)	Compounds with the molecular formula C_4H_{10} are also members of this hor series.	nologous
	There are two isomers with this molecular formula.	
	(i) What is meant by the term isomers ?	
		(2)
	(ii) Name one of these isomers and draw its displayed formula.	
	Name Displayed formula	
		(4)
(e)	Methane is another member of this homologous series.	(2)
. ,	Write a word equation for the complete combustion of methane.	
		(2)
	(Total 13	marks)
	(Total 13	3 marks)
	(Total 13	3 marks)
	(Total 13	3 marks)
	(Total 13	3 marks)
	(Total 13	3 marks)

10. Salts can be made by neutralising acids.

For example, the salt magnesium sulphate is formed when magnesium, magnesium oxide, or magnesium carbonate is added to dilute sulphuric acid.

(a) Complete the table to show the equations and products for these methods of making magnesium sulphate.

Method	Equation Names of products		
1	$Mg + H_2SO_4 \rightarrow MgSO_4 + \dots$	magnesium sulphate and	
2	$MgO + H_2SO_4 \rightarrow MgSO_4 + H_2O$	magnesium sulphate and water	
3	McCO + USO - McSO +	magnesium sulphate and	
3	$MgCO_3 + H_2SO_4 \rightarrow MgSO_4 + \dots + \dots$	and	

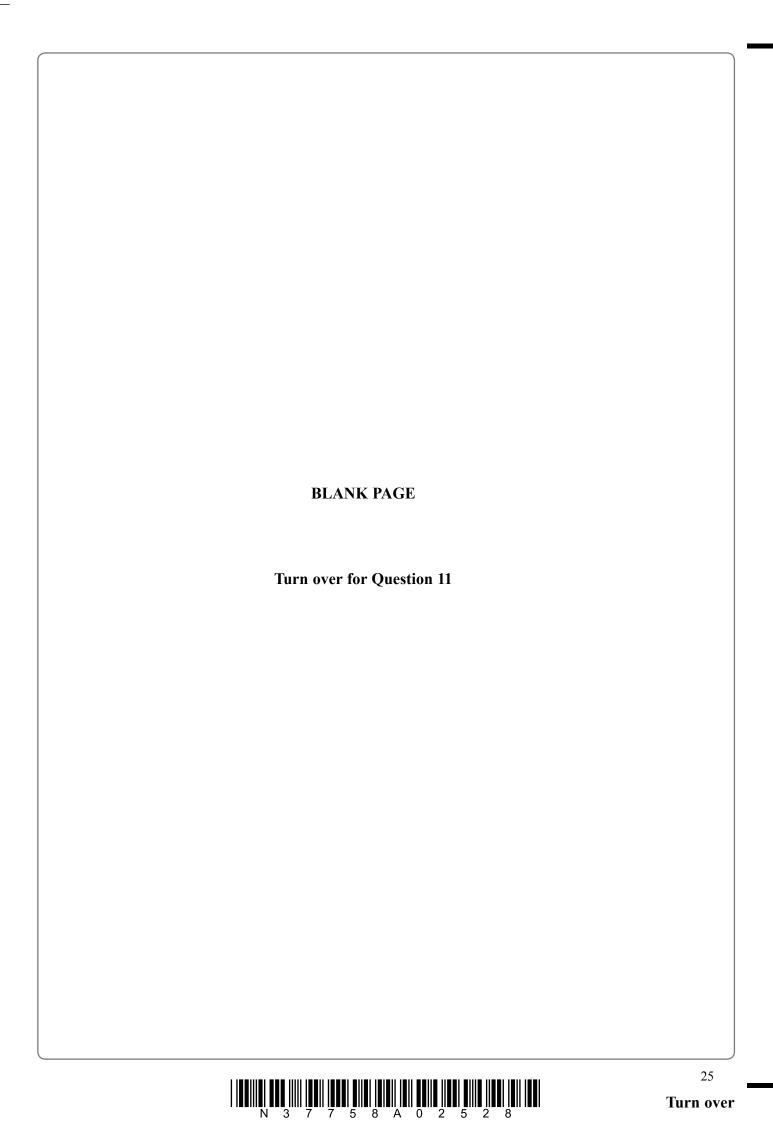
(5)

(b)	State one observation that would be made when using methods 1 and 3, but not when
	using method 2.

(1)

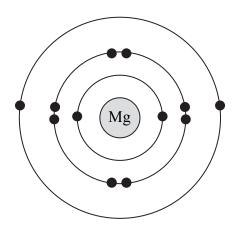
(c) A student showed the presence of sulphate ions in magnesium sulphate solution by adding dilute hydrochloric acid and barium chloride solution.

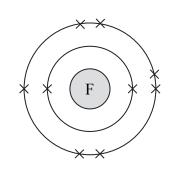
State the observation made and name the product responsible for the observation.


Observation

Name of product

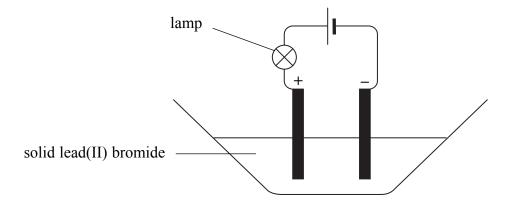
Q10


(2)


(Total 8 marks)

(2)

- 11. (a) Magnesium and fluorine react to form the ionic compound magnesium fluoride.
 - (i) The diagrams show the electron arrangement in an atom of magnesium and in an atom of fluorine.



Describe fluorine.	what h	appens,	in te	rms (of ele	ctrons,	when	magne	sium	reacts	with
			•••••	•••••	•••••				•••••		
											(3)
Give the f	formula	of each	of the	e ions	in ma	ignesiu	ım fluc	oride.			

(ii)

Leave
blank

(b) The diagram shows apparatus for the electrolysis of lead(II) bromide.

		(1)
(1)	Identify the non-metallic element used for both electrodes.	

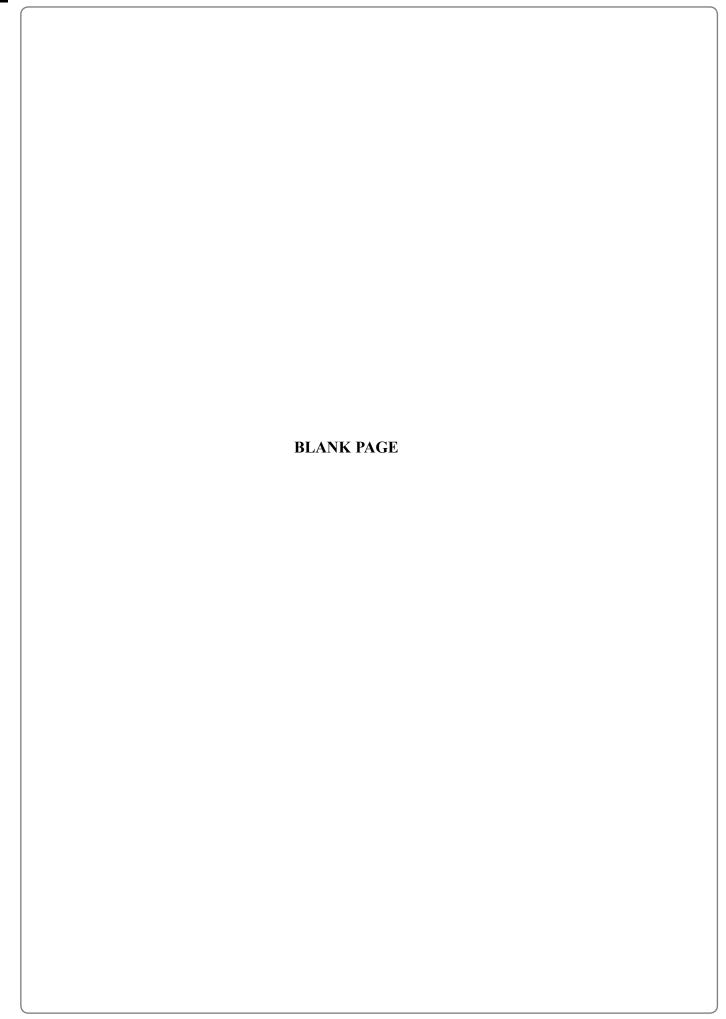
(ii)	When the apparatus is set up as shown, the lamp does not light.	
	State what must happen to the lead(II) bromide before the lamp will light.	
		(1)

(iii) When the lamp lights, electrolysis occurs and changes can be seen in the electrolyte.

Complete the table to show the substance responsible for the change and the electrode (+ or -) at which the substance is formed.

Observation	Substance	Electrode
Silvery liquid		
Brown gas		

Q11


(3)

(Total 10 marks)

TOTAL FOR SECTION B: 45 MARKS
TOTAL FOR PAPER: 100 MARKS

END

