

Paper 3

Science (Double Award) - 4437

Paper 8

Foundation and Higher Tiers

Thursday 18 November 2010 - Morning
Time: 1 hour 15 minutes

Materials required for examination Ruler, pencil and calculator

Items included with question papers minemen

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s), the paper reference and your signature.
The paper references are shown above. Write the one for which you have been entered. Check that you have the correct question paper.
Answer ALL the questions. Write your answers in the spaces provided in this question paper.
Show all stages in any calculations and state the units. Calculators may be used.

Information for Candidates
The total mark for this paper is 50 . The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).
There are 5 questions in this question paper.
There are 16 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

Write your answers neatly and in good English.

Question Number	Leave Blank
1	
2	
3	
4	
5	

1. The diagrams show some pieces of apparatus used in a chemistry laboratory.

(a) Choose from the letters $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}$ and \mathbf{F} to identify the pieces of apparatus in the table.

Name of apparatus	Letter
Beaker	
Evaporating basin	
Filter funnel	

(b) Which two pieces of apparatus can be used to measure volumes of liquids?

Choose from the letters $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}$ and \mathbf{F}.
\qquad
(2)
(c) Some of these pieces of apparatus can be used in an experiment to prepare crystals of zinc sulphate.

The experiment is carried out following these steps:

1. Pour some dilute sulphuric acid into a beaker.
2. Add a spatula full of zinc carbonate to the acid and stir the mixture with a glass rod.
3. Add another spatula full of zinc carbonate to the sulphuric acid and stir the mixture.
4. Keep adding zinc carbonate until there is no more effervescence and some solid remains unreacted.
5. Filter the contents of the beaker into an evaporating basin.
6. Heat the evaporating basin until crystals begin to form.
7. Leave the evaporating basin and its contents to cool, and filter off the crystals.
8. Spread out the crystals on a filter paper and leave them to dry in a warm place.
(i) Choose from the letters $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}$ and \mathbf{F} to identify one piece of apparatus that is not used in the experiment to prepare crystals of zinc sulphate.
(1)
(ii) What is the purpose of Step 4 in the experiment?
\qquad
(iii) Identify the substance left in the filter paper in Step 5.
\qquad

9. Some kitchen cleaners contain alkalis.

A small amount of kitchen cleaner was dissolved in distilled water to make a solution. Samples of this solution were titrated with an acid until neutralisation was complete.
(a) The diagrams show the readings on the burette before and after a student added the acid

Before

After

Use the diagrams to help you complete the table.
Give the readings to the nearest $0.05 \mathrm{~cm}^{3}$.

Burette reading after adding acid $\left(\mathrm{cm}^{3}\right)$	
Burette reading before adding acid $\left(\mathrm{cm}^{3}\right)$	
Volume of acid added $\left(\mathrm{cm}^{3}\right)$	

(b) A second student did the titration four times, using a solution of a different kitchen cleaner.

The table shows the results.

Burette reading after adding acid $\left(\mathrm{cm}^{3}\right)$	28.75	28.90	28.90	28.55
Burette reading before adding acid $\left(\mathrm{cm}^{3}\right)$	1.40	2.80	2.15	2.35
Volume of acid added $\left(\mathrm{cm}^{3}\right)$	27.35	26.10	26.75	26.20
Titration results to be used (\checkmark)				

(i) Which titration results should be used to calculate the average volume of acid added? Place ticks (\checkmark) in the table.
(1)
(ii) Use your ticked results to calculate the average volume of acid added.
(2)
(Total 6 marks)
Leave
blank
-

(Total 6 marks)	

3. Sodium thiosulphate solution reacts with dilute hydrochloric acid.

The equation for this reaction is:

$$
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{~s})
$$

As the reaction proceeds, a pale yellow precipitate forms.
(a) Identify this precipitate.
\qquad
(b) A student carried out an experiment using this method.

- She poured $25 \mathrm{~cm}^{3}$ of sodium thiosulphate solution into a conical flask.
- She added $10 \mathrm{~cm}^{3}$ of dilute hydrochloric acid and started a stop clock.
- She swirled the flask and placed it on a piece of paper marked with a black cross.
- She stopped the clock when she could no longer see the black cross through the reaction mixture in the conical flask.

She repeated the experiment several times using the same volume of dilute hydrochloric acid, but using different mixtures of sodium thiosulphate solution and water.

The table on the next page shows her results.

Expt	Volume of $\mathbf{N a}_{2} \mathbf{S}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}}(\mathbf{a q})$ $\left(\mathbf{c m}^{\mathbf{3}}\right)$	Volume of $\mathbf{H}_{\mathbf{2}} \mathbf{O}(\mathbf{l})$ $\left(\mathbf{c m}^{\mathbf{3}}\right)$	Concentration of sodium thiosulphate solution (\%)	Time for cross to disappear $(\mathbf{s)}$
1	25	0	100	6
2	20	5	80	8
3	15		60	9
4	10	15	40	15
5	5	20	20	32

(i) The results of Experiment 3 are incomplete.

What volume of water should she have used for the experiment to be a fair test?
\qquad
(ii) The volume of dilute hydrochloric acid and the volume of the mixture of sodium thiosulphate and water were kept constant in each experiment
State one other variable that she should have kept constant.
(c) Choose a suitable scale for the time taken for the cross to disappear

Plot a graph of her results on the grid below and draw a straight line or curve of best fit

Time for cross to disappear in s

Concentration of sodium
thiosulphate solution (\%)
(d) The student used her results to calculate the rate of the reaction at different concentrations of sodium thiosulphate solution.

The equation she used was

$$
\text { rate of reaction }=\frac{1}{\text { time (in s) for cross to disappear }}
$$

She then plotted a graph of rate of reaction against concentration of sodium thiosulphate solution and drew a straight line of best fit.

BLANK PAGE
4. Some students were investigating salts.

One of them suggested measuring the temperature change that occurred when different salts were dissolved in water.

This is the method they used.

- Add $50 \mathrm{~cm}^{3}$ of water to a beaker.
- Record the temperature of the water.
- Weigh 5 g of salt and add it to the water in the beaker.
- Stir the mixture with the glass rod until all the solid has dissolved.
- Record the temperature of the solution.
(a) The diagrams show the readings on the thermometer before and after a student dissolved a salt in water.

Before adding salt

After dissolving salt in water

Write down the thermometer readings and calculate the temperature change.
Temperature before.. \qquad .${ }^{\circ} \mathrm{C}$

Temperature after. \qquad .${ }^{\circ} \mathrm{C}$

Temperature change. ..${ }^{\circ} \mathrm{C}$

(d) The teacher discussed the method with the students.
(i) Student 1 said that the biggest error in the method was the loss of heat.

Suggest one way in which this error can be minimised.
\qquad
\qquad
(ii) Suggest why it is not possible to plot a graph of these results.
\qquad
\qquad
(iii) Student 3 dissolved 5 g of salt in 50 g of water.

Calculate the concentration of the salt, in grams of salt per kilogram of water.
5. The reactivities of metals can be compared using this apparatus.

Electrode 1 and electrode 2 are made from two different metals.
The greater the value, ignoring the sign, of the voltmeter reading, the bigger the difference in reactivity between the two metals.

If the reading on the voltmeter is negative, the metal used for electrode 1 is more reactive than the metal used for electrode 2.

If the reading on the voltmeter is positive, the metal used for electrode 1 is less reactive than the metal used for electrode 2.

Metal used for electrode 1	Metal used for electrode 2	Voltmeter reading (V)
P	Q	+1.6
P	R	-1.1
P	S	-0.9
Q	R	-2.7
Q	S	-2.5
R	S	+0.2

(a) Which metal in the table is the most reactive?
\qquad
(b) Which metal in the table is the least reactive?
\qquad
(c) Which two metals in the table are most similar in reactivity?
\qquad

A student investigated four other metals $\mathbf{T}, \mathbf{U}, \mathbf{V}$ and \mathbf{W}.
All these metals form ions with a $2+$ charge.
The order of reactivity of these metals is

\mathbf{T}	
\mathbf{U}	increasing
\mathbf{V}	reactivity
\mathbf{W}	

(d) When metal \mathbf{S} is used as electrode 1 and metal \mathbf{T} as electrode 2, the voltmeter reading is -0.8 V .

Calculate the voltmeter reading when metals \mathbf{P} and \mathbf{T} are compared.
\qquad
(e) When metal \mathbf{T} is added to a solution of the sulphate of metal \mathbf{U}, a displacement reaction occurs.
Ionic half-equations for the reactions occurring are:

$$
\mathrm{T} \rightarrow \mathrm{~T}^{2+}+2 \mathrm{e}^{-} \quad \text { and } \quad \mathrm{U}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{U}
$$

Suggest ionic half-equations for the reactions occurring when metal \mathbf{V} is added to a solution of the sulphate of metal \mathbf{W}.

Equation 1 \qquad
Equation 2 \qquad

(f) The overall ionic equation for the reaction that occurs when metal \mathbf{T} is added to a solution of the sulphate of metal \mathbf{U} is $\mathrm{T}+\mathrm{U}^{2+} \rightarrow \mathrm{T}^{2+}+\mathrm{U}$ Suggest an overall ionic equation for the reaction that occurs when each of the following are mixed. If no reaction occurs, write no reaction. (i) Metal \mathbf{V} is added to a solution of the sulphate of metal \mathbf{U}. \qquad (ii) Metal \mathbf{T} is added to a solution of the sulphate of metal \mathbf{W}. \qquad	
TOTAL FOR PAPER: 50 MARKS END	

